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1. HYPERFINE INTERACTION
The Hamiltonian of the hyperfine interaction of the electron spin S with the spins of the host lattice
nuclei Ik has the form [1]

Hhf = ∑
k

Ak|Ψ(Rk)|2 Ik · S, (S1)

where k enumerates the nuclei at positions Rk with the hyperfine coupling constants Ak and Ψ(r)
is the electron envelop wave function.

Spins S and Ik for any k obey angular momentum J commutation relations

[Jα, Jβ] = iεαβγ Jγ,

where α, β, γ denote the Cartesian components of vectors and εαβγ is the Levi-Chivita symbol. So
from the Heisenberg equation we obtain the equations of spin dynamics:

dIk
dt

= Ω
(k)
K × Ik, (S2a)

dS
dt

= ΩN × S, (S2b)

where
Ω

(k)
K =

Ak
h̄
|Ψ(Rk)|2S, (S3a)

ΩN = ∑
k

Ak
h̄
|Ψ(Rk)|2 Ik (S3b)

are the nuclear and electron spin precession frequencies related to the Knight and Overhauser
fields, respectively.

Provided the nuclear spin temperature is large as compared with h̄Ω(k)
K /kB, where kB is the

Boltzman constant, the nuclear spin distribution function is Gaussian:

F (ΩN) =
1

(
√

πδ)3 exp

(
−

Ω2
N

δ2

)
, (S4)

where

δ =
1
h̄

√
2
3 ∑

k
A2

k |Ψ(Rk)|2 Ik(Ik + 1) (S5)

is a parameter which determines the dispersion, as we find from Eq. (S3b).
Since the typical number of nuclei in quantum dots is very large, of the order of 105—106, the

typical nuclear spin precession frequencies Ω(k)
K are 100—1000 times smaller than the typical

electron spin precession frequency δ. This allows one to neglect the nuclear spin dynamics and to
describe the electron spin dynamics by Eq. (S2b) with constant but random ΩN taken from the
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distribution function Eq. (S4) [2, 3]. Apart from the Knight field, the nuclear spin dynamics can be
also driven by the quadrupole interaction and dipole-dipole interaction between the nuclei [1].
However, the corresponding timescales are still large, so the model of "frozen" nuclear spin
fluctuations remains valid. However, the electron hopping between the quantum dots (or donors)
can lead to the fast changes of the random Overhauser field experienced by electrons. This, in
principle, can be taken into account as described, for example, in Refs. [2, 4, 5]. This would
introduce an additional timescale, which may change the transition region between Zeno and
anti-Zeno regimes.

Thus the spin dynamics in the quantum dot is described by the Hamiltonian

Hhf = h̄ΩN · S, (S6)

which is equivalent to Eq. (S1). The electron spin operator can be rewritten using the creation (a†
i )

and annihilation (ai) operators of the states with the electron spin i = ±1/2 as

S =
1
2 ∑

i,j
σija†

i aj. (S7)

Then the Hamiltonian of the hyperfine interaction takes the form

Hhf =
h̄
2

ΩN · ∑
i,j

σija†
i aj, (S8)

which is the first term of the total system Hamiltonian, Eq. (1) in the main text.

2. SOLUTION OF THE KINETIC EQUATION
In the main text we find using the density matrix formalism that the electron spin dynamics under
continuous electron spin orientation and measurement by elliptically polarized light is described
by Eq. (20) in the main text:

Ṡ(t) = ΩN × S(t)− S(t)
τs

+ gez − 2λ(Sx(t)ex + Sy(t)ey). (S9)

Here τs is the electron spin relaxation time unrelated with the hyperfine interaction and g and λ
are the spin generation rate and measurement strength, respectively.

In the steady state, Ṡ(t) = 0, so the system of differential equations (S9) reduces to the system of
the linear algebraic equations

1
τs
+ 2λ ΩN,z −ΩN,y

−ΩN,z
1
τs
+ 2λ ΩN,x

ΩN,y −ΩN,x
1
τs




Sx

Sy

Sz

 =


0

0

g

. (S10)

The solution of this system reads

Sz

S0
=

1 + 4λτs + τ2
s (4λ2 + Ω2

N,z)

1 + 4λτs + (4λ2 + Ω2
N)τ

2
s + 2λ(Ω2

N,x + Ω2
N,y)τ

3
s

, (S11)

where S0 = gτs is the electron steady state spin polarization in the absence of the hyperfine
interaction. In the spherical coordinates with the angle θ between ΩN and the z-axis, this expression
takes the form

Sz

S0
=

1 + 4λτs +
[
4λ2 + Ω2

N cos2(θ)
]

τ2
s

1 + 4λτs + (4λ2 + Ω2
N)τ

2
s + 2λΩ2

N sin2(θ)τ3
s

. (S12)

This should be averaged over the nuclear spin distribution function Eq. (S4). The result is general
and describes both quantum Zeno and anti-Zeno effects.
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Noteworthy, the averaging can be performed analytically in the limiting cases of strong and
weak measurements.

In the limit of strong measurements when the measurement strength λ much larger than typical
precession frequency δ we expand Eq. (S12) in the limit λ ≫ ΩN and obtain

Sz

S0
=

2λ

2λ + Ω2
Nτs sin2(θ)

. (S13)

One can see, that the stronger the measurements, the weaker the nuclei-induced spin relaxation
and the larger the spin polarization, in agreement with the quantum Zeno effect. Averaging
Eq. (S13) over Eq. (S4) we obtain Eq. (25) of the main text:

⟨Sz⟩
S0

= −νEi(−ν) exp(ν), (S14)

where ν = 2λ/(τsδ2) and Ei(x) = −
∞∫
−x

e−t/t dt is the exponential integral function.

In the opposite limit of λ ≪ δ the expansion of Eq. (S12) reads

Sz

S0
=

cos2(θ)

1 + 2λτs sin2 θ
. (S15)

Thus, the weak measurements accelerate the spin relaxation and suppress the spin polarization, so
the quantum anti-Zeno effect takes place. Averaging over Eq. (S4) gives Eq. (27) of the main text:

⟨Sz⟩
S0

=
1

2λτs

[√
1 + 2λτs

2λτs
arctanh

(√
2λτs

1 + 2λτs

)
− 1

]
. (S16)

3. NUMERICAL DETAILS

To average numerically the dimensionless quantity S(ΩNτs, θ) = Sz/S0 given by Eq. (S12) over the
distribution function Eq. (S4) we use the Gauss-Laguerre quadrature to speed up the calculations.
Then the average can be calculated as

⟨S⟩ = 1√
π

∫
dy e−y√y

∫
dθ sin(θ)S(√yτsδ, θ) ≈ 2√

π

N

∑
i=1

wiS(yiτsδ)
√

yi, (S17)

where y = Ω2
N/δ2,

f =
1
2

∫
f sin(θ)dθ, (S18)

and wi and yi are the weights and the roots according to the Gauss-Laguerre quadrature scheme [6].
The averaging in Eq. (S18) is performed using the Simpson’s rule. In the calculations we use N = 15
after checking that larger N yield the same results.
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