Supplementary Information

Operating interfaces to synthesize $L1_0$ -FePt@Bi-rich nanoparticles by modifying the heating process

Ling Chang^{a,b}, Chun Wu^{c,d}, Qunshou Wang^c, Ting Li^c, Dong Zhao^c, Kai Wang^a, Qiang Wang^{*a}, and

Wenli Pei*c

^a Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.

^b School of Metallurgy, Northeastern University, Shenyang 110819, China.

^c Key Laboratory of Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.

^d School of Materials Science and Engineering, Liaoning Technical University, Fuxin, 123000, China

* Corresponding author. E-mail address: E-mail: <u>peiwl@atm.neu.edu.cn</u> (W. Pei), E-mail: <u>wangq@mail.neu.edu.cn</u> (Q. Wang).

Fig. S1 Elemental mapping of $L1_0$ -FePtBi NPs synthesized at a heating rate of 2°C/min.

Fig. S2 Elemental mapping of $L1_0$ -FePtBi NPs synthesized at a heating rate of (a) 6°C/min, (b) 10° C/min, and $10\&2^{\circ}$ C/min.

Fig. S3 SAED patterns of the synthesized FePtBi NPs at a heating rate of 10°C/min.

Fig. S4 EDS spectrums of the synthesized $L1_0$ -FePt/Bi-rich NPs at 160°C, 230°C, 310°C, and 360°C holding for 0 h, 1 h, and 3 h