Supporting information

A Stable and Large-Scale Organic-Inorganic Halide Perovskite Nanocrystals/Polymer Nanofiber Films Prepared by a Green and In-Situ Fiber Spinning Chemistry

Jing-Jing Li,^{1,a} Tingting Cui,^{1,a} Jiafei Yu,^b Zhi-Bin Liang,^a Yunzheng Liang,^a Jun Li,^{*,b} and Su Chen^{*,a}

^{a.} State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009,
P. R. China. E-mail: chensu@njtech.edu.cn

^b Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China. E-mail: lijun@njmu.edu.cn

Supplementary Figures

Figure S1. The corresponding size distributions of (a) $PAN/MAPb(Br_xCl_{1-x})_3$, (b) $PAN/MAPbBr_3$ and (c) $PAN/MAPb(Br_xI_{1-x})_3$ nanofibers.

Figure S2. (a) TEM and (b) HRTEM images of PAN/MAPb $(Br_xCl_{1-x})_3$ nanofiber. (c) TEM and (d) HRTEM images of PAN/MAPb $(Br_xI_{1-x})_3$ nanofiber.

Figure S3. SEM images of (a) PMMA/MAPb(Br_xCl_{1-x})₃, (b) PMMA/MAPb Br_3 and (c) PMMA/MAPb(Br_xI_{1-x})₃ nanofiber films. PL emission spectra of (d) PMMA/MAPb(Br_xCl_{1-x})₃, (e) PMMA/MAPb Br_3 and (f) PMMA/MAPb(Br_xI_{1-x})₃ nanofiber films.

Figure S4. Original SEM image of PAN/MAPbBr₃ nanofiber film for collecting EDS mapping shown in Fig. 2g.

Figure S5. Photographs of (a) PAN/MAPb(Br_xCl_{1-x})₃, (b) PAN/MAPb Br_3 and (c) PAN/MAPb(Br_xI_{1-x})₃ nanofiber films and their corresponding digital photos under 365 nm UV light (d-f).

Figure S6. Time-resolved fluorescence decay curves of $PAN/MAPb(Br_xCl_{1-x})_3$ nanofiber film.

Figure S7. Time-resolved fluorescence decay curves of $PAN/MAPb(Br_xI_{1-x})_3$ nanofiber film.

Figure S8. (a) Emission spectra of the green LED prepared by PAN/MAPbBr₃ nanofiber film. Inset: The photographs of the prepared green LED (the left one) and the LED drived by a voltage of 3.0 V (the right one). (b) CIE color coordinates corresponding to the PAN/MAPbBr₃ nanofiber film.

Figure S9. (a) Flexibility of PAN/MAPbBr₃ nanofiber film. (b-e) Photographs of the bending and folding shapes of PAN/MAPbBr₃ nanofiber film under 365 nm UV light.

Samples	MAX: PbBr ₂	PL Peak	PLQY	τ [ns]	Fitting	FWHM
	[molar ratio]	position	[%]		values [ns]	[nm]
		[nm]				
PAN/MAPbBr ₃	0.5 : 1	526	11	24.53	$\tau_1 = 0.68$	23
					$\tau_2 = 8.87$	
					$\tau_3 = 37.75$	
	1:1	532	18	96.24	$\tau_1 = 20.58$	24
					$\tau_2 = 151.86$	
	2:1	528	58	177.65	$\tau_1 = 34.48$	27
					$\tau_2 = 262.64$	
	3:1	534	36	214.36	$\tau_1 = 40.21$	25
					$\tau_2 = 296.64$	
	4:1	533	28	168.47	$\tau_1 = 20.23$	25
					$\tau_2 = 87.62$	
					$\tau_3 = 322.56$	
$PAN/MAPb(Br_xI_{1-x})_3$	4:1	612	16	679.45	$\tau_1 = 229.82$	70
					$\tau_2 = 803.69$	
PAN/MAPb(Br _x Cl _{1-x}) ₃	2:1	464	25	73.69	$\tau_1 = 16.39$	29
					$\tau_2 = 93.91$	

Table S1. Preparation conditions and optical characteristics of PAN/MAPbX₃ (X = Cl, Br, I) nanofiber films.