Supporting Information

The in-depth insight of Yb³⁺ effect in NaErF₄-based host sensitization

upconversion: a double-edged sword

Yang Wang, ‡ Shuai Zhou, ‡ Fuyao Sun, Po Hu, Wei Zhong and Jiajun Fu*

School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China. E-mail: <u>fujiajun668@gmail.com</u>

Yang Wang and Shuai Zhou contributed equally to this work.

Supporting Figures

Figure S1. Size distribution diagrams of the $NaErF_4$: Yb core nanoparticles with different Yb³⁺ concentration.

Figure S2. Size distribution diagrams of (a) NaErF₄:10%Yb@NaYF₄, (b) NaErF₄:10%Yb@NaLuF₄, and (c) NaErF₄:10%Yb@NaGdF₄.

Figure S3. Upconversion luminescence spectra of NaErF₄:10%Yb and NaErF₄:10%Yb@NaYF₄ excited by 980 nm laser (Concentration: 40 mg/mL; power density: $20W/cm^2$; solvent: cyclohexane).

 $NaErF_4:10\%Yb@NaYF_4/NaLuF_4$ (a) and $NaErF_4:10\%Yb@NaGdF_4$ (b) core-inert shell nanoparticles under 980 nm excitation.

S5. UCL of NaErF₄:10%Yb@NaYF₄, Figure spectra NaErF₄:10%Yb@NaLuF₄ and NaErF₄:10%Yb@NaGdF₄ excited by 808 nm laser (a) and 1550 nm laser (b) (Concentration: 40 mg/mL; power density: 20 W/cm²; solvent: cyclohexane). CIE chromaticity diagrams of NaErF₄:10%Yb@NaYF₄, NaErF₄:10%Yb@NaLuF₄ and NaErF₄:10%Yb@NaGdF₄ excited by 808 nm laser (c) and1550 nm laser (d). Decay curves of Er^{3+} in its ${}^{4}F_{9/2}$ state from NaErF₄:10%Yb@NaYF₄, NaErF₄:10%Yb@NaLuF₄ and NaErF₄:10%Yb@NaGdF₄ excited by 808 nm laser (e) and 1550 nm laser (f). Decay curves of Er^{3+} in its ${}^{4}S_{3/2}$ state from NaErF₄:10%Yb@NaYF₄, NaErF₄:10%Yb@NaLuF₄ and NaErF₄:10%Yb@NaGdF₄ excited by 808 nm laser (g) and 1550 nm laser (h).

Figure S6. UCL spectra of NaErF₄:10%Yb@NaYbF₄ and NaErF₄:10%Yb@NaYbF₄:0.5%Tm excited by 980 nm laser (Concentration: 40 mg/mL; power density: 20 W/cm²; solvent: cyclohexane).

Figure S7. Power density dependence of Er^{3+} emissions in NaErF₄:10%Yb@NaYF₄ (a) and NaErF₄:10%Yb@NaYF₄:20%Yb (b) under 980 nm excitation.

Figure S8. Power density dependence of Er^{3+} emissions in NaErF₄:10%Yb@NaYF₄ (a) and NaErF₄:10%Yb@NaYF₄:20%Yb (b) under 808 nm excitation.

Figure S9. (a) UCL spectra of NaErF₄:10%Yb@NaY_{1-x}F₄:xYb core-shell nanoparticles (x = 0, 20%, 40%, 60%, 80% and 100%) under 1550 nm excitation (Concentration: 40 mg/mL; power density: 20 W/cm²; solvent: cyclohexane). (b) G/R ratio of (a) samples. (c) CIE chromaticity diagram of the emissions from (a) samples. Decay curves of Er³⁺ in its ⁴F_{9/2} state (d)

and ${}^{4}S_{3/2}$ (e) in (a) samples under 1550 nm excitation. (f) Proposed energy transfer mechanisms of NaErF₄: 10%Yb@NaYF₄:Yb under 1550 nm excitation.

Figure S10. UCL spectra of $NaErF_4:10\%Yb@NaYF_4:20\%Yb$, NaYF_4:20%Yb,2%Er@NaYF_4 and NaErF_4:0.5%Tm@NaYF_4 under 980 nm excitation (Concentration: 40 mg/mL; power density: 20 W/cm²; solvent: cyclohexane).

NaErF₄:30%Yb monitored at 541 nm under 980 nm excitation. Core nanoparticles Standard deviation* Decay time at 541 nm NaErF₄ 6.11 µs 0.074 µs NaErF₄:10%Yb 6.37 µs 0.042 µs NaErF₄:20%Yb 6.95 µs 0.064 µs $0.057\;\mu s$ NaErF₄:30%Yb 7.21 µs

Table S1. Decay times of NaErF₄, NaErF₄:10%Yb, NaErF₄:20%Yb, and NaErF₄:30%Yb monitored at 541 nm under 980 nm excitation.

* The standard deviations were acquired from a single fitting.