Supporting Information

Electronic Property Modulation in Two-dimensional Lateral Superlattices of Monolayer Transition Metal Dichalcogenides

Hongshuai Zou^{a,+}, Xinjiang wang^{b,+}, Kun Zhou^a, Yawen Li^a, Yuhao Fu^{b*},

Lijun Zhang a*

^aState Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile

Materials of MOE and College of Materials Science and Engineering, Jilin University,

Changchun 130012, China. E-mail: lijun_zhang@jlu.edu.cn;

^bState Key Laboratory of Superhard Materials, College of Physics, Jilin University,

Changchun 130012, China. E-mail: fuyuhaoy@gmail.com

+ These authors contributed equally

	<i>a</i> (Å)		<i>d</i> (Å)	$E_g \left(\mathrm{eV} \right)$		<i>Effective mass</i> (m ₀)		
	Cal.	Exp.	Cal.	Cal.	Exp.	y-direction	x-direction	m*
MoS ₂	3.18	2 1 [3]	2.417	1.68	2.4 ^[6]	e: 0.48	e: 0.48	e:0.37 ^[10] /0.44 ^[11] /0.65 ^[12]
	3.18 ^[1]	3.10	2.41 ^[2]	1.68 ^[5]		h: 0.60	h: 0.59	$h{:}0.44^{[10]}\!/0.44^{[11]}\!/0.69^{[12]}$
WS ₂	3.18	2 152[4]	2.416	1.82	2.73 ^[7]	e: 0.32	e: 0.32	0.40 ^[11] /0.75 ^[12]
	3.18 ^[1]	5.155	2.41 ^[2]	1.81 ^[1]		h: 0.43	h: 0.43	$0.43^{[11]}/0.57^{[12]}$
MoSo	3.3	2 200[3]	2.546	1.45	2.18 ^[8]	e: 0.56	e: 0.56	0.48 ^[11] /0.74 ^[12]
Mose ₂	3.32[1]	5.20019	2.54 ^[2]	1.44 ^[1]		h: 0.68	h: 0.66	$0.51^{[11]}/0.77^{[12]}$
WSe ₂	3.32	2 20[3]	2.546	1.55	0.10[0]	e: 0.35	e: 0.35	0.36 ^[11] /0.48 ^[12]
	3.32 ^[2]	5. 28 ^[3]	2.55 ^[2]	1.54 ^[5]	2.12[9]	h: 0.47	h: 0.46	$0.39^{[11]}/0.62^{[12]}$

Table S1. Calculated lattice parameters, bond length, bandgap, and effective masses of electron and hole of MX_2 monolayers.

Fig. S1 (a,b) Schematic diagram of z- and a-SLs, respectively. (c,d) Lattice parameters evolution with compositions in 2D lateral TMD-HSs. The a_1 , b_1 , a_2 and b_2 represent the corresponding lattice parameters in (a,b).

Fig. S2 Calculated band structures of lateral a-(MoS₂)_m/(WS₂)_m SLs.

 Table S2. Detailed Bandgaps of all studied 2D lateral TMD-SLs and alloys.

II	Compositions	Bandgap (eV)			Effective mass (m ₀)		
Heterostructures	Compositions	zigzag	armchair	alloy	zigzag	armchair	alloy
	(MoS ₂) ₁ /(WS ₂) ₇	1.7791	1.7580	1.7809	x-m _e /x-m _h 0.46/0.52	x-m _e /x-m _h 0.65/0.44	$x-m_{e}/x-m_{h} 0.35/0.43$
					y-m _e /y-m _h 0.36/0.45	$y-m_e/y-m_h 0.41/0.44$	y-m _e /y-m _h 0.35/0.43
	$(\mathbf{M}_{\mathbf{c}}\mathbf{S})/(\mathbf{W}\mathbf{S})$	1 74(0	1.7220	1.7538	0.51/0.54	0.77/0.47	0.37/0.46
	$(1005_2)_2/(105_2)_6$	1./400			0.40/0.47	0.46/0.46	0.37/0.46
	$(M_{0}S)/(WS)$	1 7105	1.7060	1.7349	0.53/0.56	0.51/0.48	0.39/0.47
	(1v1052)3/(vv 52)5	1./105			0.43/0.51	0.46/0.48	0.39/0.47
	$(M_0S_1)/(WS_1)$	1 7015	1 6822	1 71/17	0.54/0.57	0.61/0.53	0.41/0.49
	(10052)4/(0052)4	1.7015	1.0622	1./14/	0.45/0.53	0.47/0.50	0.42/0.50
	$(M_0S_1)_2/(WS_1)_2$	1 6010	1.6790	1.6992	0.54/0.59	0.51/0.55	0.42/0.51
		1.0910			0.46/0.54	0.48/0.52	0.42/0.51
	$(MoS_2)_6/(WS_2)_2$	1.6841	1.6750	1.6873	0.54/0.62	0.55/0.54	0.44/0.53
Mos. Ws.					0.45/0.56	0.48/0.54	0.44/0.53
1003_2 - 1003_2	(MoS ₂) ₇ /(WS ₂) ₁	1.6794	1.6730	1.6770	0.54/0.64	0.61/0.57	0.45/0.55
					0.47/0.58	0.48/0.57	0.45/0.56
	$(MoS_2)_1/(WS_2)_1$	1.7136	1.7254		0.45/0.54	0.43/0.52	
					0.42/0.52	0.41/0.50	
	$(MoS_2)_2/(WS_2)_2$	1.7137	1.7		0.42/0.49	0.46/0.50	
					0.42/0.50	0.43/0.50	
	$(M_0S_1)_1/(WS_1)_1$	1.7094	1.6973		0.43/0.49	0.41/0.47	
	(10052)3/(1052)3				0.41/0.52	0.43/0.49	
	$(M_{0}S)/(WS)$	1 6805	1.6724		0.51/0.54	0.70/0.50	
	$(1003_2)_{5}/(103_2)_{5}$	1.0895			0.42/0.55	0.48/0.48	
	$(M_0S_1)/(WS_1)$	1 6707	1 ((2)		0.60/0.62	0.68/0.68	
	$(1003_2)_{6}/(1003_2)_{6}$	1.0/9/	1.0031		0.58/0.62	0.46/0.47	
	$(M_0S_1)/(M_0S_0)$	1.4538	1 4560	1 1570	0.58/0.64	0.49/0.67	0.53/0.63
	$(1003_2)_1/(1003e_2)_7$		1.4300	1.43/8	0.60/0.60	0.55/0.64	0.57/0.60
MoS ₂ -MoSe ₂	$(MoS_2)_2/(MoSe_2)_6$	1.4695	1 4720	1.4829	0.59/0.64	0.57/0.83	0.53/0.64
			1.4/20		0.61/0.72	0.54/0.65	0.52/0.69
	$(MoS_2)_3/(MoSe_2)_5$	1.4839	1.4828	1.5088	0.58/0.65	0.68/0.68	0.52/0.61

					0.62/0.72	0.52/0.64	0.56/0.59
	$(MoS_2)_4/(MoSe_2)_4$	1.5069	1.5029	1.5434	0.56/0.65	0.53/0.69	0.50/0.62
					0.57/0.73	0.50/0.65	0.57/0.59
		1 50 40	1.5330	1.5506	0.54/0.64	0.51/0.80	0.50/0.62
	$(MOS_2)_5/(MOSe_2)_3$	1.5342		1.5/06	0.57/0.83	0.50/0.64	0.48/0.60
		1 5700	1.5740	1 (010	0.52/0.63	0.54/0.86	0.50/0.60
	$(MoS_2)_6/(MoSe_2)_2$	1.5/89		1.6018	0.47/0.84	0.49/0.63	0.51/0.58
	$(MoS_2)_7/(MoSe_2)_1$	1.6220	1.6270	1.6400	0.50/0.60	0.46/0.71	0.47/0.59
					0.51/0.64	0.48/0.60	0.47/0.57
		1 - 1 40	1.5531		0.56/0.64	0.53/0.67	
	$(MoS_2)_1/(MoSe_2)_1$	1.5149			0.53/0.62	0.52/0.62	
	$(\mathbf{M}_{\mathbf{r}}\mathbf{G})/(\mathbf{M}_{\mathbf{r}}\mathbf{G}_{\mathbf{r}})$	1 5240	1 5 3 5 9		0.56/0.63	0.49/0.63	
	$(MOS_2)_2/(MOSe_2)_2$	1.5340	1.5258		0.53/0.67	0.50/0.60	
		1 5150	1.5121		0.55/0.64	0.55/0.62	
	$(MOS_2)_3/(MOSe_2)_3$	1.5156			0.53/0.74	0.51/0.62	
	$(\mathbf{M}_{\mathbf{r}}\mathbf{G})/(\mathbf{M}_{\mathbf{r}}\mathbf{G}_{\mathbf{r}})$	1 4022	1 4000		0.57/0.66	0.64/0.70	
	$(MoS_2)_5/(MoSe_2)_5$	1.4833	1.4889		0.66/0.79	0.51/0.67	
	$(\mathbf{M}_{\mathbf{r}}\mathbf{G})/(\mathbf{M}_{\mathbf{r}}\mathbf{G}_{\mathbf{r}})$	1 4(12	1 4 (7 (0.57/0.67	0.75/0.75	
	$(MOS_2)_6/(MOSe_2)_6$	1.4613	1.46/6		0.74/0.92	0.50/0.65	
		1.5298	1.5020	1.5400	0.46/0.56	0.82/0.49	0.39/0.47
	$(MoS_2)_1/(WSe_2)_7$				0.45/0.49	0.43/0.49	0.39/0.47
		1.4955	1.4640	1.5556	0.51/0.58	0.83/0.57	0.41/0.49
	$(MoS_2)_2/(WSe_2)_6$				0.45/0.55	0.48/0.51	0.47/0.50
	$(MoS_2)_3/(WSe_2)_5$	1.4847	1.4700	1.5599	0.52/0.60	0.64/0.68	0.43/0.51
					0.46/0.61	0.49/0.52	0.43/0.51
	$(MoS_2)_4/(WSe_2)_4$	1.4953	1.4699	1.5757	0.51/0.63	0.69/0.70	0.47/0.52
					0.53/0.68	0.47/0.55	0.44/0.54
	(MoS ₂) ₅ /(WSe ₂) ₃	1.5176	1.4960	1 (020	0.50/0.66	0.63/0.74	0.48/0.54
				1.0030	0.50/0.72	0.48/0.57	0.44/0.55
	$(M_{\alpha}S_{\alpha})/(WS_{\alpha})$	1 5629	1 5 4 2 0	1 6209	0.49/0.69	0.54/0.76	0.46/0.56
Mag Wga	$(1003_2)_{6}/(1032_2)_{2}$	1.5628	1.3430	1.0208	0.51/0.70	0.48/0.61	0.54/0.56
$100S_2 - WSe_2$	$(M_{0}S_{0})/(WS_{0})$	1 6226	1 6100	1 6 4 6 0	0.48/0.69	0.52/0.68	0.46/0.57
	$(100S_2)_7/(WSe_2)_1$	1.6326	1.6190	1.0400	0.48/0.63	0.47/0.64	0.49/0.58
	$(M_{2}C)/(WC_{2})$	1 (11)	1 (172		0.52/0.54	0.45/0.56	
	$(100S_2)_1/(00Se_2)_1$	1.6116	1.01/5		0.43/0.53	0.44/0.54	
	$(M_{\alpha}S_{\alpha})/(WS_{\alpha})$	1 5 4 7 7	1 5210		0.49/0.54	0.46/0.53	
	$(MOS_2)_2/(WSe_2)_2$	1.5477	1.3219		0.44/0.53	0.45/0.50	
	$(MoS_2)_3/(WSe_2)_3$	1 5 2 2 2	1 5000		0.49/0.53	0.45/0.62	
		1.3222	1.3009		0.43/0.53	0.47/0.52	
	(MoS ₂) ₅ /(WSe ₂) ₅	1.4557	1.4304		0.53/0.52	0.72/0.71	
					0.68/0.86	0.55/0.56	
	$(MoS_2)_6/(WSe_2)_6$	1 /102	1 2007		0.53/0.51	0.83/0.83	
		$2/6/(w Se_2)_6 1.4193 $	1.3997		0.82/1.10	0.50/0.49	

					0.32/0.43	0.44/0.45	0.34/0.43
	$(MoSe_2)_1/(WS_2)_7$	1.7033	1.7200	1.7493	0.32/0.43	0.43/0.43	0.35/0.48
	$(MoSe_2)_2/(WS_2)_6$	1.6773	1.6610		0.44/0.45	0.43/0.49	0.39/0.47
				1.6848	0.43/0.43	0.47/0.58	0.39/0.46
		1 (0.1.1	1 (100	1 (250	0.42/0.53	0.42/0.53	0.42/0.50
	$(MoSe_2)_3/(WS_2)_5$	1.6044	1.6190	1.6279	0.47/0.50	0.47/0.50	0.43/0.50
		1 5000	1.5728		0.51/0.58	0.51/0.58	0.46/0.51
	$(MoSe_2)_4/(WS_2)_4$	1.5808		1.5750	0.50/0.62	0.50/0.62	0.46/0.59
		1.5357	1.5400	1.5456	0.46/0.58	0.46/0.58	0.47/0.56
	$(MoSe_2)_5/(WS_2)_3$				0.46/0.62	0.46/0.62	0.50/0.55
			1.5000	1 40.05	0.52/0.59	0.52/0.59	0.49/0.59
	$(MoSe_2)_6/(WS_2)_2$	1.5102		1.4925	0.49/0.72	0.49/0.72	0.47/0.66
$MoSe_2-WS_2$		1.4606	1 4 600	1.4626	0.54/0.61	0.54/0.61	0.51/0.62
	$(MoSe_2)_7/(WS_2)_1$	1.4686	1.4690	1.4636	0.60/0.60	0.60/0.60	0.52/0.68
		1 4004	1 5002		0.46/0.54	0.48/0.55	
	$(MoSe_2)_1/(WS_2)_1$	1.4804	1.5903		0.45/0.53	0.47/0.52	
		1 5000	1 5757		0.47/0.54	0.55/0.56	
	$(MoSe_2)_2/(WS_2)_2$	1.5882	1.5/5/		0.49/0.59	0.49/0.55	
	(MoSe ₂) ₃ /(WS ₂) ₃	1 5 (0 2	1.5932		0.51/0.54	0.52/0.56	
		1.5683			0.47/0.60	0.47/0.55	
	(MoSe ₂) ₅ /(WS ₂) ₅	1.5651	1.566		0.56/0.55	0.88/0.68	
					0.53/0.66	0.52/0.56	
	$(MoSe_2)_6/(WS_2)_6$	1 5 (47	1.5659		0.61/0.57	0.93/0.72	
		1.364/			0.60/0.69	0.50/0.58	
	$(M_0S_0)/(WS_0)$	1 51(2	1 4006	1.5121	0.41/0.47	0.81/0.43	0.38/0.46
	$(MOSe_2)_1/(WSe_2)_7$	1.3102	1.4990		0.44/0.48	0.42/0.46	0.40/0.48
	$(M_{2}S_{2})/(WS_{2})$	1 4901	1 4600	1.4944	0.46/0.49	0.89/0.48	0.42/0.47
	$(MOSe_2)_2/(WSe_2)_6$	1.4891	1.4090		0.44/0.48	0.49/0.48	0.40/0.48
	$(MoSe_2)_3/(WSe_2)_5$	1.4682	1.4591	1 4705	0.49/0.50	0.51/0.53	0.45/0.52
				1.4703	0.48/0.54	0.49/0.50	0.46/0.60
	$(M_{0}S_{0})/(WS_{0})$	1.4545	1.4436	1 4610	0.51/0.53	0.51/0.53	0.47/0.52
	$(MOSe_2)_4/(WSe_2)_4$			1.4010	0.54/0.60	0.50/0.53	0.46/0.54
	$(M_{0}S_{0})/(WS_{0})$	1.4504	1.4421	1.4465	0.50/0.55	0.56/0.60	0.47/0.55
Masa Wsa	$(1003e_2)5/(1003e_2)3$				0.54/0.60	0.52/0.54	0.51/0.60
$103e_2 - w 3e_2$	$(M_{0}S_{0})/(WS_{0})$	1.4503	1 4 4 0 2	1 4441	0.53/0.58	0.56/0.56	0.51/0.60
			1.4402	1.4441	0.54/0.70	0.53/0.58	0.48/0.60
	$(M_{0}S_{0})/(WS_{0})$	1.4462	1 4410	1 4257	0.53/0.61	0.72/0.56	0.51/0.59
	$(1003e_2)_7/(1003e_2)_1$		1.4410	1.4337	0.54/0.60	0.54/0.61	0.48/0.54
	$(M_0Se_0)/(WSe_0)$	1 1633	1 /1827		0.45/0.54	0.48/0.55	
		1.4033	1.483/		0.48/0.57	0.47/0.53	
	$(MoSe_2)_2/(WSe_2)_2$	1.4605	1.4468		0.48/0.53	0.54/0.55	
					0.47/0.57	0.50/0.54	
	$(MoSe_2)_3/(WSe_2)_3$	1.4628	1 1/07		0.49/0.53	0.50/0.50	
			1.4492		0.45/0.57	0.49/0.53	

	$(\mathbf{M}, \mathbf{G}, \mathbf{v}) / (\mathbf{M}, \mathbf{G}, \mathbf{v})$	1 4 4 2 1	1 4254		0.52/0.52	0.64/0.58	
	(1010302)5/(00302)5	1.4431	1.4234		0.57/0.63	0.59/0.56	
	$(M_{0}S_{0})/(WS_{0})$	1 4200	1 / 1 9 7		0.54/0.52	0.81/0.76	
	$(1003e_2)_{6}/(1003e_2)_{6}$	1.4390	1.4162		0.65/0.69	0.53/0.51	
	$(WS_{2})/(WS_{2})$	1.5719	1.5721	1.5743	0.37/0.45	0.34/0.45	0.34/0.42
	$(w S_2)_1/(w Se_2)_7$				0.35/0.48	0.34/0.44	0.34/0.45
	$(WS_{2})_{2}/(WS_{2})_{3}$	1 5076	1.5948	1 6034	0.36/0.45	0.32/0.47	0.34/0.43
	$(vv S_2)_2/(vv Se_2)_6$	1.3970		1.0034	0.35/0.45	0.34/0.44	0.34/0.41
	$(WS)/(WS_2)$	1 6155	1 6150	1 6218	0.37/0.45	0.38/0.48	0.35/0.43
	$(WS_2)_3/(WSe_2)_5$	1.0155	1.6150	1.0318	0.39/0.56	0.34/0.45	0.34/0.46
	$(WS)/(WS_{2})$	1 6464	1.6415	1.6714	0.35/0.45	0.32/0.45	0.33/0.43
	$(w S_2)_4/(w Se_2)_4$	1.0404			0.34/0.50	0.33/0.45	0.34/0.42
	$(WS_2)_5/(WSe_2)_3$	1.6776	1.6742	1.7118	0.36/0.45	0.35/0.54	0.32/0.44
					0.39/0.56	0.33/0.45	0.32/0.44
	$(WS_2)_6/(WSe_2)_2$	1.7275	1.7197	1.7410	0.34/0.45	0.32/0.52	0.32/0.42
WS WSa					0.39/0.56	0.33/0.44	0.33/0.45
W S ₂ - W SC ₂	$(WS_2)_7/(WSe_2)_1$	1.7727	1.7724	1.7801	0.34/0.43	0.30/0.44	0.31/0.41
					0.35/0.40	0.32/0.43	0.30/0.40
	$(WS_2)_1/(WSe_2)_1$	1.6165	1.6804		0.39/0.45	0.34/0.45	
					0.36/0.43	0.33/0.44	
	$(WS_1)_1/(WS_{21})_1$	1.67	1.6536		0.35/0.45	0.32/0.43	
	(\VS2)2/(\VSC2)2	1.07			0.35/0.46	0.33/0.43	
	$(WS_1)_1/(WS_{21})_1$	1 6480	1 6 4 5 4		0.37/0.45	0.32/0.45	
	(\V\S2)3/(\V\SC2)3	1.0489	1.0434		0.35/0.47	0.33/0.45	
	(WS ₂) ₅ /(WSe ₂) ₅	1.6286	1.6262		0.36/0.45	0.41/0.60	
					0.36/0.47	0.33/0.46	
	$(WS)/(WS_{c})$	1 6144	1 6038		0.36/0.46	0.42/0.59	
		1.0144	1.0050		0.43/0.68	0.33/0.45	

Fig. S3 Calculated band alignment of TMDs with PBE functional.

Fig. S4 (a) Atomic structure of monolayer $MX_2(M=Mo, W; X=S, Se)$, where the orthogonal supercell (defined by D_{o1} and D_{o2}) is enclosed with blue frames. (b) The corresponding first Brillouin zones of the orthogonal supercell. R_{o1} , R_{o2} represent the orthogonal axes of the orthorhombic cell.

		1	81	
		MoS_2	WSe ₂	Bandgap (eV)
Strain from	CBM (eV)	-4.261	-3.555	- 0.848
Sualli-lite	VBM (eV)	-5.943	-5.109	0.848
7:0700	CBM (eV)	-4.410	-3.458	- 0.667
Zigzag	VBM (eV)	-5.901	-5.077	- 0.007
Armahair	CBM (eV)	-4.409	-3.432	- 0.662
Annenair	VBM (eV)	-5.902	-5.071	- 0.002

Table S3. Calculated band-edge energy levels of lateral $(MoS_2)_4/(WSe_2)_4$ SLs. The energy levels with strain-free from the band alignment calculations, without considering the lattice mismatch. Moreover, the bandgap is all listed. The red numbers represent the band-edge position of these SLs.

References

- 1. W. Wei, Y. Dai, Q. Sun, N. Yin, S. Han, B. Huang and T. Jacob, *Physical Chemistry Chemical Physics*, 2015, **17**, 29380–29386.
- 2. J. Kang, S. Tongay, J. Zhou, J. Li and J. Wu, Appl. Phys. Lett., 2013, 102, 012111.
- R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, R. A. de Groot and A. Wold, *Phys. Rev. B*, 1987, **35**, 6195–6202.
- W. J. Schutte, J. L. De Boer and F. Jellinek, *Journal of Solid State Chemistry*, 1987, 70, 207–209..
- 5. H. Wang, W. Wei, F. Li, B. Huang and Y. Dai, Phys. Chem. Chem. Phys., 2018, 20, 25000–25008.
- Y. L. Huang, Y. Chen, W. Zhang, S. Y. Quek, C.-H. Chen, L.-J. Li, W.-T. Hsu, W.-H. Chang, Y. J. Zheng, W. Chen and A. T. S. Wee, *Nature Communications*, 2015, 6, 6298.
- 7. B. Zhu, X. Chen and X. Cui, Scientific Reports, 2015, 5, 9218.
- 8. M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo,

Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie and M. F. Crommie, *Nature Materials*, 2014, 13, 1091–1095.

- C. Zhang, Y. Chen, A. Johnson, M.-Y. Li, L.-J. Li, P. C. Mende, R. M. Feenstra and C.-K. Shih, *Nano Lett.*, 2015, 15, 6494–6500.
- 10. H. Peelaers and C. G. Van de Walle, Phys. Rev. B, 2012, 86, 241401.
- X. Yuan, M. Yang, L. Wang and Y. Li, *Physical Chemistry Chemical Physics*, 2017, 19, 13846– 13854..
- 12. Y. Sun, X. Wang, X.-G. Zhao, Z. Shi and L. Zhang, Journal of Semiconductors, 2018, 39, 072001.