Supporting Information

Engineering yolk-shell MnFe@CeO_x@TiO_x nanocages as a highly efficient catalyst for selective catalytic reduction of NO with NH₃ at low temperature

Ziguo Cai^{a, b}, Guodong Zhang^a, Zhicheng Tang^{a, c*}, Jiyi Zhang^{b*}

(^a State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National

Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.

^b School of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, China.

^c Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, China)

^{*}Corresponding author.

E-mail address: <u>tangzhicheng@licp.cas.cn (</u>Z. Tang), <u>zhangjiyi@lut.edu.cn (</u>J. Zhang)

Table S1 The number of acid sites on the surface of $MnFeO_x$, $MnFe@TiO_x$,

 $MnFe@CeO_x, MnFe@CeO_x@TiO_x-20, MnFe@CeO_x@TiO_x-40 and$

	Weak acid	Medium acid	Strong acid	Total acid	
Samples	peak area	peak area	peak area	peak area	
MnFeO _x	83.4	88.1	-	171.5	
MnFe@TiO _x	72.1	163.2	29.7	265.0	
MnFe@CeO _x	45.6	94.4	5.7	145.7	
MnFe@CeO _x @TiO _x -20	89.2	189.0	40.1	318.3	
MnFe@CeO _x @TiO _x -40	62.3	118.0	74.0	254.3	
MnFe@CeO _x @TiO _x -90	89.5	74.0	43.8	207.3	

MnFe@CeO_x@TiO_x-90.

Sample	Su	Surface composition (at.%)				Mn^{4+}/Mn_{total}	Fe ³⁺ /Fe _{total}	Ce ³⁺ /Ce _{total}	O _{ads} /O _{total}	O _{sur} /O _{total}
	Mn	Fe	Ce	0	Ti	(%)	(%)	(%)	(%)	(%)
Fresh	2.4	4.0	2.2	70.9	20.5	43.5	68.8	22.5	61.2	20.9
160°C	3.4	3.3	2.7	72.1	18.5	34.6	63.9	18.0	47.5	28.4

Table S2 MnFe@CeO_x@TiO_x-40 fresh and after enduring H₂O test at 160 °C catalyst

surface element content and Mn 2p, Fe 2p, Ce 3d, and O1s spectra fitting result.

We prepared MnFe@TiO_x-40@CeO_x catalyst sample. Take 0.20 g of the previously prepared precursor $Mn_3[Fe(CN)_6]_2 \cdot nH_2O$ nanocubes and disperse them in 40 ml of absolute ethanol by ultrasonic (30 min). After stirring for 30 min, 5 ml of deionized water was added dropwise and recorded as solution A. Dissolve 0.50 g of butyl titanate in 20 ml of absolute ethanol and call it solution B. Then, under vigorous stirring, the B solution was slowly dropped into the A solution. After aging in a 25 °C water bath for 2 h, the product was collected by centrifugation. After washing with absolute ethanol for 3 times, the obtained product was dried at 80 °C for 12 h to obtain MnFe@TiOx-40 precursor. Take 0.10 g of the previously prepared precursor MnFe@TiOx-40 and disperse it in a mixed solution of 40 ml of absolute ethanol and 40 ml of deionized water. Under magnetic stirring, 0.30 g of $Ce(NO_3) \cdot 6H_2O$ and 0.40 g of $C_6H_{12}N_4$ were added to the above solution in turn. Heat further to 70 °C in a water bath and maintain reflux for 2 h. After naturally cooling to room temperature, the product was collected by centrifugation and washed twice with deionized water. The obtained product was dried at 60 °C for 12 h and calcined at 400 °C for 3 h (the heating rate was 1 °C/min) to obtain the MnFe@TiO_x-40@CeO_x catalyst.

We prepared $CeO_x@TiO_x-40$ catalyst. Under magnetic stirring, 0.30 g of $Ce(NO_3) \cdot 6H_2O$ and 0.40 g of $C_6H_{12}N_4$ were dispersed in a mixed solution of 40 ml of absolute ethanol and 40 ml of deionized water. Stir in a water bath at 70 °C for 2 h, a CeO_x precursor is obtained. Take 0.20 g CeO_x precursor ultrasonically (30min) and disperse it in 40 ml absolute ethanol, after stirring for 30min, add 5ml deionized water dropwise and record as solution A. Dissolve 0.50 g of butyl titanate in 20 ml of

absolute ethanol and call it solution B. Then, under vigorous stirring, the B solution was slowly dropped into the A solution. After aging in a 25 °C water bath for 2 h, the product was collected by centrifugation. After washing three times with absolute ethanol, the obtained product was dried at 80 °C for 12 h, and calcined at 400 °C for 3 h (the heating rate was 1 °C/min) to obtain the CeO_x@TiO_x-40 catalyst.

Fig. S1. NO conversion rate of the catalysts under GHSV=30, 000 h⁻¹ (a, b). H₂Oresistance and stability test of the catalysts (c, d). Testing conditions: 500 ppm NH₃, 500 ppm NO, and 5 vol. % O₂ balanced with N₂ and 5 vol. % H₂O (when needed).

Fig. S2. NO conversion rate of the catalysts under GHSV=100000 h⁻¹ (a). The H₂O resistance test of MnFe@CeO_x@TiO_x-40 catalyst at 240 °C (b), N₂ selectivity of

catalysts (c), The SO₂ resistance test of catalysts (d).

Fig. S3. TEM images of the $MnFe@TiO_x$ catalyst.

Fig. S4. HR-TEM image of the catalysts: $MnFeO_x$ (a), $MnFe@TiO_x$ (b),

 $MnFe@CeO_x$ (c), $MnFe@CeO_x@TiO_x-20$ (d), $MnFe@CeO_x@TiO_x-40$ (e),

 $MnFe@CeO_x@TiO_x-90$ (f).

Fig. S5. Raman spectra of the catalysts.

Fig. S6. The relative proportion of catalysts active species (MnFeO_x (1), MnFe@CeO_x (2), MnFe@TiO_x (3), MnFe@CeO_x@TiO_x-20 (4), MnFe@CeO_x@TiO_x-40 (5), MnFe@CeO_x@TiO_x-90 (6)).

Fig. S7. Relative number of catalyst acid sites (MnFeO_x (1), MnFe@TiO_x (2), MnFe@CeO_x (3), MnFe@CeO_x@TiO_x-20 (4), MnFe@CeO_x@TiO_x-40 (5),

 $MnFe@CeO_x@TiO_x-90$ (6)).

Fig. S8. $MnFe@CeO_x@TiO_x-40$ catalyst at 160 °C NH₃ in-situ DRIFT adsorption

experiment (a-b) and NO+O₂ in-situ DRIFT adsorption experiment (c-d).