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Figure S1. Schematic illustration of the nanopore gated nanocavity fabrication process. (a) SiNx 

deposition on SOI wafer by means of low-pressure chemical vapor deposition (i), electron beam 

lithography (EBL) and reactive ion etching (RIE) patterning in SiNx layer (ii), backside window opening 

using photolithography followed by RIE (iii), silicon (Si) etching in the bulk substrate by combing deep 

RIE and 80 ℃ KOH wet etching (iv), top Si etching in 60 ℃ KOH solution (v) and buried oxide removal 

by buffered HF (vi).  
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Figure S2. Analysis of translocation events of 20 kb DNA through Device 1 at different positive applied 

voltage and ionic current measured by switching the applied bias between 400 mV and -400 mV. (a) 

Box plot of duration of translocation event at 300 mV, 400 mV and 500 mV, respectively. (b) Box plot 

of relative amplitude of translocation event (ΔI/Io) at 300 mV, 400 mV and 500 mV, respectively. (c) 

Ionic current measured by switching the applied bias between 400 mV and -400 mV (remain 10 s at 

each bias polarity) for 10 times. The ionic current at -400 mV is always smaller than the open pore 

current Io (marked by the red dash line) and shows strong fluctuations, while the baseline current at 400 

mV always remains at the same level of Io.   

 



 

Figure S3. Ionic current measurements of 100 pM DNA through Device 1 with different DNA lengths 

in 4 M LiCl at 400 mV. (a) Ionic current traces for the measurements with different DNA lengths. It is 

worthy of noting that after using the same device for measurements of multiple times, the Si 

pore size became enlarged, as evidenced by the different baseline current. This can be caused 

by slight etching of Si in such high concentration electrolyte (4M LiCl). (b) Exemplified view 

of typical translocation events for 20 kb DNA. 



Figure S4. Ionic current measurements of 20 kb DNA in 4 M LiCl at 400 mV and -400 mV (a) Ionic 

current trace with 10 pM DNA. The capture at 400 mV is around 0.09 s-1. (b) Ionic current trace with 

100 pM DNA using the same device. The capture at 400 mV is around 0.44 s-1. A clear dependence of 

the capture rate on the DNA concentration is seen. (c) Ionic current traces with 10 pM DNA by reversing 

the applied bias from 400 mV to -400 mV (remain 60 s at each bias polarity) for 5 times. 



 

Figure S5. Ionic current measurements of 100 pM DNA translocation through bare Si nanocavities (no 

top SiNx nanopore) with different DNA lengths in 4 M LiCl at 400 mV and -400 mV, respectively. (a) 



SEM iamges of three different bare Si nanocavities. (b, d, f) Ionic current traces of 5 kb, 10 kb and 20 

kb DNA translocation events. (c, e, g) Scatter plots of 5 kb, 10 kb and 20 kb DNA translocation events. 

 

 

Figure S6. Ionic current measurements and scatter plot of DNA translocation events with different DNA 

lengths in 1 M LiCl passing Device 2 at +400 mV and -400 mV, respectively. (a) Ionic current traces 

of 5 kb, 10 kb and 20 kb DNA translocation through Device 2 at +400 mV. (b) Distribution of the 

amplitude and duration of the translocation events in (a). (c) Ionic current traces of 5 kb, 10 kb and 20 

kb DNA translocation through Device 2 at -400 mV. (d) Distribution of amplitude and duration of the 

translocation events in Figure (c).  



 

Figure S7. Examples of the time evolution of the number of DNA threads in the Si pore constriction 

after DNA compaction in a nanocavity device, from Brownian simulations. Data refers to different 

simulation replicas. The signal is obtained as a running average over a window of 1/100 of the entire 

simulation and, therefore, it is not an integer. 



SUPPLEMENTARY METHODS S1. SIMULATION SET-UP

We used a coarse-grained Brownian approach to model the dynamics of the dsDNA inside the

nanopore under the action of an voltage. The DNA is described as a chain of beads and springs

plus additional potentials to enforce the prescribed persistence length `p = 50 nm and to take

into account excluded volume among different DNA filaments. Electrophoresis, electroosmosis and

pore confinement are included as external actions on the polymer beads. Electric and velocity

fields were pre-calculated solving a stationary Navier-Stokes Poisson-Nernst-Planck (NS-PNP)

system [1, 2]. In the following, the description of each modelling ingredient is reported.

Coarse grained model of DNA. The coarse-grained model of DNA consists in an almost inex-

tensible polymer chain of N beads of mass m, charge q and position ri with a persistence length,

`p, (worm like chain, WLC). Therefore the potential energy describing the system is

U(r1, . . . , rN ) =
Kh

2b2

N−1∑
i=1

(|ri+1 − ri| − b)2 −
kBT`p
b3

N−1∑
i=2

(ri+1 − ri) · (ri − ri−1) + UNB , (1)

where the first term is the sum of stiff harmonic potentials such that each bond length can only

perform negligible fluctuations around its equilibrium value, |ri+1 − ri| ' b (almost inextensible

condition). The second term represents the penalty that the chain has to pay upon bending,

it enforces a chain in the bulk to maintain, on average, a persistence length, `p. T is the tem-

perature while kB is the Boltzmann constant. Note that, in general, the bending potential is

equivalently expressed as kBT`pb
−1∑N−1

i=2 (ni+1 ·ni), where ni+1 is the unit vector from bead i and

i + 1 [3]. However, since our polymer is almost inextensible, we preferred the expression (1) that

is computationally less expensive. UNB refers to non-bonded interactions that are modelled as a

Weeks-Chandler-Anderson (WCA) potential, i.e. Lennard-Jones truncated at its minimum, acting

among all the beads with the exception of first and second neighbours. Electrostatic repulsion is

not included in the non-bonded interaction since experiments are run at high salt concentration

(typically 4M) resulting in an almost complete screening of the electrostatic interaction on the

scale of our coarse-graining.

We simulate the action of the external field as an electrosmotic velocity and an electrophoretic

force. Moreover, interaction with impenetrable solid walls of the pore is considered. Accordingly,

the motion of each bead is governed by the Langevin system

ṙi = vi

mv̇i = −γ(vi − vf )−∇riU + qE + Gi + Ri . (2)



The term −γ(vi − vf ), with vf (ri, t) the velocity of the fluid, is the drag exerted on the poly-

mer by the electroosmotic flow of the solvent. The term −∇riU represents the internal forces of

the chain on the i-th bead, see Eq. (1). The term qE, with E(ri, t) the external electric field,

is the electrophoretic force and Gi indicates all the other external forces mimicking the impen-

etrability of the membrane and the pore walls. Finally, Ri denotes a random force, accounting

for the collisions with the solvent, and fulfilling the fluctuation dissipation relation 〈Ri〉 = 0 and

〈Rµ,i(t)Rν,j(0)〉 = 2kBTγδµ,νδi,jδ(t), with µ, ν = {x, y, z}. Eqs.(2) are numerically integrated via

a leap-frog algorithm [4], with constant integration time-step δt = 0.4 ps for all the runs.

Electrohydrodynamics simulations. The Langevin model in Eqs.(2) is completed when suit-

able expression for the electroosmotic velocity vf (r, t), the electric field E(r, t) and wall repulsion

force G(r, t) are provided. For pores whose narrowest section is of the order of a nanometer and/or

whose solvent-exposed surface presents a complex shape/charge nanoscale pattern (e.g. biological

pores), reliable expressions of vf (r, t), E(r, t) and G(r, t) may be obtained with atomistic ap-

proaches such as all-atoms molecular dynamics simulations (MD), see e.g. [5–7]. For larger pores,

continuum models are expected to provide reliable approximation of electrohydrodynamics [8, 9].

When the nanopores has a simple shape, such as a cylinder, a combination of ideal electroosmotic

flow solution in the pore and hemispherical models for the entrance regions can provide a reliable

first approximation of the continuum electrohydrodynamics [1, 10–12]. However, since the geome-

try of the pore employed in this study too complicated for a theoretical approach, we opted for a

numerical solution of the electrohydrodynamics.

We solved standard Navier-Stokes Poisson-Nernst-Planck (NS-PNP) system for an electrolyte

solution with only two ionic species (one cation and one anion). For completeness, we reported

here the NS-PNP equations [1]

∇ · u = 0 (3)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u +

ρe
ρ
E (4)

∂n±

∂t
+ u · ∇n± = −∇ ·

[
−D±∇n± + n±µ±ez±E

]
(5)

∇2Φ = −ρe
ε

(6)



where p is the pressure, n+ and n− the ion number densities, Φ the electrical potential, E = −∇Φ

the electric field, ρ and ν the density and the kinematic viscosity of the solvent (both assumed

to be constant and homogeneous), µ+ and µ− the mobilities of the ions, D+ = µ+kBT and

D− = µ−kBT their diffusion coefficients, z+ and z− their ionic valences, e the electron charge,

ε = ε0εe, with ε0 the vacuum dielectric constant and εe the relative permittivity of the solution and

ρe = e(|z+|n+ − |z−|n−) the local charge. Poisson equation is solved on the entire domain (fluid

plus solid) while the other equations are solved only in the fluid domain. The matching condition

for the electrical field between solid and liquid is

ε0εeEe · n̂ = ε0εwEw · n̂ + qw , (7)

where the subscript e and w denote the electrolyte and the solid wall, qw indicates the surface

charge distribution at the interface and n̂ the normal to the solid-liquid interface pointing towards

the liquid [1, 2]. In this work, we used qw = −0.016 C/m2, while the relative dielectric constant

are εw = 11.8 for Si and εw = 9.7 for SiNx.

The system set-up is sketched in figure S8. Note that, to save computational resources we are

imposing a cylindrical symmetry, hence the 2D axial-symmetric system corresponds to a conical

pore and not strictly to the actual shape of the pore.

Pore wall model. Pore confinement is introduced as an external force that repels the polymer

beads when they get close to the pore surface. Also an attractive component mimicking possible

adsorbtion at the wall is included. The corresponding potential is defined as follows [13]

Uw(r) =

∫
W
φw(r− r′) dr′ (8)

where φw is a LJ potential, We used σw = 5 nm and we calibrate ε to get Uw ' kBT approximatively

at the nominal pore wall, i.e. the one where no slip boundary condition is applied in continuum

simulations and to get Uw ' −2kBT , as minimum of the wall potential. A sinusoidal perturbation

on the scale of the bead distance, b, is added to make the polymer experiences also a tangential

force along the wall which simulates friction effects.

Simulation procedure. To induce a self-entangled conformation of the dsDNA, we generated a

random chain conformation inside the pore. In this initial highly compacted conformation, several
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Figure S8: Continuum simulation set-up. a) Simulations were run in an 2D axial-symmetric domain.

In the solid domain only the Poisson equation is solved while in the liquid domain the entire NS-PNP

system is computed. The total size of the simulation in axial direction is 1118 nm while the radial size is

500 nm. Panels b) and c) report the axial component of the electric and of the fluid velocity fields in the

pore region for applied voltages ∆V = 0.4V and ∆V = −0.4V .

overlaps among the beads are present. To avoid strong numerical instabilities, due to the large

forces among overlapping beads, the first 0.8µs of the simulation was run with shorter range WCA

forces (cutoff = 0.95 σ). Moreover, ∆V = 0, to switch off electrophoresis and electroosmosis, as a

consequence, the pore confinement is the only external action on the polymer. This first equilibra-

tion allows the polymer to gradually reach a conformation consistent with the exclusion volume of

the beads. A second 0.8µs equilibration is run with standard WCA. The final conformation of this

second equilibration was used as initial condition for two non-equilibrium simulations, one using the

external electrophoretic and electroosmotic actions from a continuum simulation where a voltage



∆V = 0.4 V is applied between the two electrode and the other corresponding to ∆V = −0.4 V .

The simulations were run for 40µs or until the DNA does not exit from the pore (an event that

happens only for positive voltages, when electrophoresis is directed from Trans to Cis reservoir).

In all the simulations, the temperature was set to T = 300 K the persistence length to `p = 50 nm.

The equilibrium distance between consecutive beads is b = 4 nm, while the WCA parameters are

σ = 8 nm and ε = 10 kJ mol−1. We assigned to each bead a mass of a dsDNA of contour length

b, i.e. m = 7.06 kDa. Concerning the charge of each bead, we selected q = −5.88e roughly corre-

sponding to an effective charge of 0.5e on each monomer of the dsDNA. The bead drag coefficient

is set to γ = 6πµb. For each case, we simulated six different replicas of the described protocol

that differs for initial condition and random seed. Since there is a certain degree of arbitrariness

in the selection of the coarse-grained parameters, we have performed some consistency checks to

verify that the main conclusion of the simulations are not affected by minor changes of the model

parameters. For instance, we run additional simulation using σ = 6 nm instead of σ = 8 nm

or using a more attractive wall (wall potential minimum Vw = −10kBT ) or a less attractive wall

(Vw = −0.2kBT ). The qualitative picture is confirmed, in any case, the polymer remain trapped

for ∆V < 0 while is released on the Cis side for ∆V > 0.
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