Supporting Information to

Silicon-based Spectrally Selective Emitters with Excellent High-Temperature Stability on Stepped Metasurface

Yu Zhu, Guozhi Hou, Qingyuan Wang, Ting Zhu, Teng Sun, Jun Xu*, and Kunji Chen

National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China Emails: junxu@nju.edu.cn

Contents

Section 1 SEM characterizations of the hybrid silicon-based structures and absorption spectra of Si stepped NPs

Section 2 Absorption spectra of the hybrid silicon-based structures

Section 3 FDTD simulation of the hybrid silicon-based structures

Section 4 Annealing tests of the hybrid silicon-based metasurface emitter

Section 5 Comparison of performance and fabrication characteristics

Section 1 SEM characterizations of the hybrid silicon-based structures and absorption spectra of Si stepped NPs

Figure S1 (a) SEM image of a Si wafer coated with a monolayer of close-packed PS nanospheres. (b-c) Top-view and side-view SEM characterizations of the Si stepped NPs (ICP etching parameters: $300 \text{ s-}O_2 210 \text{ s-}300 \text{ s}$). (d) Absorption spectra of Si stepped NPs with different ICP etching parameters. (e) Sectional-view SEM image of the hybrid Si stepped NP/Mo/SiN_x structure. (f) SEM image at a 45° tilted view of the hybrid Si stepped NP/Mo/SiN_x structure.

Figure S2 (a) Absorption spectra of the Si stepped NPs with different ICP etching parameters coated with 30 nm Mo. (b) Absorption spectra of the Si stepped NPs with different ICP etching parameters coated with 30 nm Mo and

36 nm thick SiN_x . (c) Absorption spectra of the hybrid silicon-based metasurface emitter from 220 nm to 11000 nm with 60, 90, 120, 150 nm thick Mo. (d) Absorption spectra of the metasurface emitter taken at room temperature in the wavelength range of 220 nm- 6000 nm, before and after annealing at 1273 K in Ar atmosphere for 1 h.

Section 3 FDTD simulation of the hybrid silicon-based structures

Figure S3 (a, b) Simulated electric field distribution of the hybrid Si stepped NP/Mo/SiN_x structure at 800 nm with polarization angles of 0° and 90° .

Section 4 Annealing tests of the hybrid silicon-based metasurface emitter

Figure S4 (a) Absorption spectra and SEM images of the hybrid silicon-based metasurface emitter taken at room temperature, before and after annealing at 1073 K in the air for 6hrs. Scale bar: 1 μ m. The corresponding XRD patterns are shown in (b).

Section 5 Comparison of performance and fabrication characteristics

Sample parameters	Average absorptivity in the visible wavelength range (400nm-780nm)	Average absorptivity from 220nm to 2000nm	Absorptivity corresponding to the interference peak	Wavelength corresponding to the interference peak
Si stepped NP-Mo 120nm-SiN _x 0 nm	86.861%	87.783%	94.019%	1452 nm
Si stepped NP-Mo 120nm-SiN _x 24 nm	95.404%	91.913%	97.667%	506 nm
Si stepped NP-Mo 120nm-SiN _x 36 nm	96.937%	94.923%	99.372%	644 nm
Si stepped NP-Mo 120nm-SiN _x 48 nm	90.235%	92.293%	96.891%	884 nm
Si stepped NP-Mo 120nm-SiN _x 60 nm	90.926%	94.934%	98.327%	1014 nm

Table S1 Comparison of some indicators of the Si stepped NP/Mo structure, coated with 0, 24, 36, 48, 60 nm SiN_x , respectively.

Refs.	19	21	28	32	This work	
Material	Si/TiN/HfO2	$SiO_2/TiN/SiN_x$	Si/W/Al ₂ O ₃	Si/Mo	Si/Mo/SiN _x	
Absorption performance	94% (300-2300 nm)	87% (250-2250 nm)	95% (220-2600 nm)	95% (990-1850 nm)	95% (220-2000 nm)	
	-	29% (5-13 μm)	-	10% (5 µm)	19% (5-11 μm)	
dielectric layer	30 nm HfO ₂	$160 \text{ nm SiN}_{\mathrm{x}}$	$50 \text{ nm Al}_2\text{O}_3$	-	$36 \ \mathrm{nm} \ \mathrm{SiN}_{\mathrm{x}}$	
thermal stability	1473 K in Ar atmosphere	1073 K in vacuum	1273 K in N ₂ atmosphere	1473 K in Ar atmosphere	1273 K in Ar atmosphere	
	-	-	-	-	1073 K in the air	
Fabrication method	hole-mask colloidal lithography	continuously variable spatial frequency photolithography	PS sphere lithography, metal-assisted chemical etching	hole-mask colloidal lithography	PS sphere lithography	

Table S2 Comparison of some absorbers/emitters with similar structures.