Supplementary Information for

The rise of MAX phase alloys - large-scale theoretical screening for prediction of chemical order and disorder

Martin Dahlqvist*, Johanna Rosen*

Materials Design, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden

* corresponding authors: martin.dahlqvist@liu.se; johanna.rosen@liu.se

Supplementary Fig. 1. Schematic illustration of considered spin configurations for disordered solid solution MAX phases in a 120 atom supercell.

Supplementary Fig. 2. Short rang order parameter of the *M* sublattice as function of coordination shell distance for different supercell sizes considered when generating SQS supercells.

Year	Phase	Reported x values	References
1980	(Ti _x V _{1-x}) ₂ AIC	≤ 0.8	1, 2, 3, 4
1980	(V _x Cr _{1-x}) ₂ AIC	0 < x < 1	1, 2, 5, 6, 7
1980	(Ti _x Cr _{1-x}) ₂ AIC	0.02, 0.25, ≥ 0.75	1, 8
1980	(Ti _x Nb _{1-x}) ₂ AIC	0 < x < 1	1, 4, 9, 10, 11
1982	(V _x Ta _{1-x}) ₂ AIC	0.65	12
2019	(Hf _x Ta _{1-x}) ₂ AIC	x < 0.25	13
1983	(Ti _x Ta _{1-x}) ₂ AIC	0.4	12, 14
2017	(Ti _x Zr _{1-x}) ₂ AIC	≤ 0.2, ≥ 0.55	15, 16
1980	(V _x Nb _{1-x}) ₂ AIC	0 < x < 1	4, 12, 17, 18
2013	(Cr _x Mn _{1-x}) ₂ AIC	≥ 0.8	19, 20, 21
2014	(Zr _x Nb _{1-x}) ₂ AIC	0 < x < 1	17, 22, 23
2018	(Sc _x Nb _{1-x}) ₂ AIC	0.33	24
2018	(Ti _x Mo _{1-x}) ₂ AIC	≥ 0.8	25
2017	(V _x Mn _{1-x}) ₂ AIC	0.96	26
2017	(Cr _x Fe _{1-x}) ₂ AIC	≥ 0.98	21
2018	(Cr _x Mn _{1-x}) ₂ GaC	0.5, ≥ 0.7	20, 27, 28, 29
2015	(Mo _x Mn _{1-x}) ₂ GaC	0.5	30
2009	(Ti _x Zr _{1-x}) ₂ InC	0.5	31, 32
2002	(Ti _x Hf _{1-x}) ₂ InC	0.47, 0.5	31, 33
2011	(Ti _x V _{1-x}) ₂ GeC	0.5	34
2016	(Ti _x Cr _{1-x}) ₂ GeC	≥ 0.75	35
2009	(V _x Cr _{1-x}) ₂ GeC	0 < x < 1	35, 36, 37
2013	(Cr _x Mn _{1-x}) ₂ GeC	≥ 0.75	35, 38, 39, 40
2016	(Cr _x Mo _{1-x}) ₂ GeC	≥ 0.5	35
2018	(Cr _x Mn _{1-x}) ₂ AuC	0.5	29

Supplementary Table 1. Experimentally reported quaternary 211 *M*-site solid solution MAX phases.

Year	Phase	References
2017	(Mo _{2/3} Sc _{1/3}) ₂ AIC	41
2017	(Mo _{2/3} Y _{1/3}) ₂ AIC	42
2017	(Cr _{2/3} Sc _{1/3}) ₂ AIC	43
2017	(Cr _{2/3} Y _{1/3}) ₂ AIC	43
2018	(W _{2/3} Sc _{1/3}) ₂ AIC	44
2018	(W _{2/3} Y _{1/3}) ₂ AIC	44
2018	(Cr _{2/3} Zr _{1/3}) ₂ AIC	45
2017	(V _{2/3} Zr _{1/3}) ₂ AIC	42
2019	(V _{2/3} Sc _{1/3}) ₂ AIC	46
2019	(Mo _{2/3} RE _{1/3}) ₂ AIC (RE = Ce, Pr, Nd, Sm, Pd, Tb, Dy, Ho, Er, Tm, Lu)	47
2018	(Mo _{2/3} Sc _{1/3}) ₂ GaC	48
2018	(Mo _{2/3} Y _{1/3}) ₂ GaC	48
2019	(Cr _{2/3} Sc _{1/3}) ₂ GaC	49
2019	(Mn _{2/3} Sc _{1/3}) ₂ GaC	49
2019	(Mo _{2/3} RE _{1/3}) ₂ GaC (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)	50

Supplementary Table 2. Experimentally reported quaternary *i*-MAX phases with *M*-site in-plane chemical order.

Supplementary Table 3. Atomic radius and electronegativity (Pauling scale) considered for M and A. ^{51, 52}

М	Atomic	Electronegativity	A	Atomic	Electronegativity
Sc	1 62		Δι		
00	1.02	1.00		1.40	1.01
Y	1.80	1.22	Ga	1.40	1.81
Ti	1.47	1.54	In	1.58	1.78
Zr	1.60	1.33	Si	1.38	1.90
Hf	1.59	1.30	Ge	1.44	2.01
V	1.35	1.63	Sn	1.63	1.96
Nb	1.46	1.60	Ni	1.25	1.91
Та	1.46	1.50	Pd	1.37	2.20
Cr	1.29	1.66	Pt	1.38	2.28
Мо	1.39	2.16	Cu	1.28	1.90
W	1.39	2.36	Ag	1.44	1.93
Mn	1.27	1.55	Au	1.44	2.54
Fe	1.26	1.83	Zn	1.36	1.65
Со	1.25	1.88			
Ni	1.25	1.91			

Α	М'	M	∆ <i>H_{i-MAX}</i> (meV/atom)	Equilibrium simplex	Status
AI	Мо	Y	-100.7	YMoC ₂ , Mo ₃ AI, YAI ₂ , YAI ₃ C ₃	synthesized i-MAX
AI	Cr	Sc	-90.3	Cr ₂ AIC, Sc ₃ AIC, Sc ₂ Al ₂ C ₃ , ScAl ₃	synthesized <i>i</i> -MAX
	Cr	Zr Zr	-58.5	ZrG, Cr2AIC, Cr2AI, ZrAI3	synthesized <i>i</i> -MAX
Â	Mo	Sc	-38.6	Mo2SCAIC2(0-MAX), (SC2/3M01/3)2AIC, M03AI, M03AI8	synthesized <i>i</i> -MAX
AI	Cr	Ŷ	-32.2	Cr ₂ AIC, YAI ₂ , Y ₂ Cr ₂ C ₃ , Cr ₇ C ₃	synthesized <i>i</i> -MAX
AI	W	Sc	-26.6	ScW ₂ AIC ₂ (A), W, ScAl ₃	synthesized i-MAX
AI	V	Sc	-26.2	ScAl ₂ , Sc ₃ AlC, V ₂ AlC, V ₁₂ Al ₃ C ₈	synthesized <i>i</i> -MAX
	Mn Nn	r Sc	-22.3 -95.4	VVC , VV , VAI_2 , VVC_2 Mn2AIC, Sc2AI2C2, MnAL, Sc2AIC	synthesized I-IMAX
Al	V	Hf	-29.1	V_2AIC , Hf_3AIC_2 , $HfAI_2$, V_3AI	
AI	Ti	Zr	-28.0	Ti ₂ AIC, Zr ₃ AIC ₂ , Zr ₄ AI ₃ , Zr ₂ AI ₃	
Al	Cr	Hf	-24.7	HfC, Cr_2AIC , Cr_2AI , Cr_5AI_{21}	
AI	Nb Sc	Y W/	-24.7	YAI2, ND12AI3C8, Y3AIC, ND2C	
AI	Mn	Ŷ	-24.0	Mn3AIC. YMn4Ala. YAI2. Y10Mn13C18	
Al	Mn	Zr	-22.8	MnAl, ZrC, Mn ₃ AlC, C	
Al	Cr	Nb	-20.4	Cr ₂ AIC, Cr ₂ AI, NbAl ₃ , Nb ₁₂ Al ₃ C ₈	
AI	Cr	la 7r	-14.5	Cr_2AIC , Cr_2AI , Ia_2AI , $Ia_{12}AI_3C_8$	
AI	Mo	Zr	-10.3	ZrC, Mo3Al, C, Mo3Al	
Al	Ti	Y	-2.6	Ti ₃ AIC ₂ , YAI ₂ , Y ₃ AIC, Y ₂ AI	
Al	V	Y	-0.7	YAI2, Y3AI, V12AI3C8, V2C	
Au	Ti	Zr	-10.8	TiC _{0.75} , ZrAu ₂ , ZrC _{0.875} , Ti ₃ Au	
Cu	Mn	Sc	-43.0	$Cu, ScCu_2, Sc_3C_4, Mn_{23}C$	
Cu	Mo	Sc	-3.5	$Cu, ScCu_2, Cl_7C_3, Sc_2ClC_3$ Mo ₂ C. ScCu ₂ , Cu, Sc ₃ C ₄	
Ga	Mn	Sc	-98.8	Mn ₂ GaC, (Sc _{2/3} Mn _{1/3}) ₂ GaC	synthesized i-MAX
Ga	Cr	Sc	-80.5	Cr ₃ C ₂ , ScGa ₂ , (Sc _{2/3} Cr _{1/3}) ₂ GaC	synthesized i-MAX
Ga	Мо	Sc	-49.2	Mo ₂ ScGaC ₂ , ScGa ₃ , Mo ₃ Ga, (Sc _{2/3} Mo _{1/3}) ₂ GaC	synthesized <i>i</i> -MAX
Ga	NO	Y Mo	-47.2	MO_2C , YGa2, (Y2/3 $MO_{1/3}$)2GaC, C (MooreServe)2GaC, ScoMoGaCe, ScoGaC, ScGae	synthesized I-MAX
Ga	Cr	Zr	-62.4	ZrC. ZrGa3. Cr2GaC. Cr7C3	
Ga	Sc	W	-53.8	Sc ₂ WGaC ₂ , ScGa ₂ , W, Sc ₁₁ Ga ₁₀	
Ga	V	Sc	-43.9	ScGa ₂ , V ₆ C ₅ , V ₂ GaC, Sc ₁₁ Ga ₁₀	
Ga	Mo	Zr	-35.6	ZrC, Mo ₂ Ga ₂ C, Mo ₃ Ga, MoGa ₄	
Ga	V Mn	Zr Zr	-31.3	V2GaC, ZFGa, ZF3GaC2 ZrC, Mn2GaC, Mn2Ga, MnGa4	
Ga	Y	Mo	-24.7	$(Mo_{2/3}Y_{1/3})_2$ GaC, Y ₃ GaC, YGa ₂ , Y ₄ C ₅	
Ga	Υ	W	-23.5	YWC ₂ , YGa ₂ , W, Y ₃ GaC	
Ga	Cr	Hf	-18.6	HfC, $CrGa_4$, $Cr_{23}C_6$	
Ga	V Sc	HT	-17.1	V2GaU, Hf2GaU	
Ga	Zr	v Mo	-10.4	ZrC. Mo ₃ Ga. ZrGa ₃ , Zr ₄ GaC ₃	
Ga	Cr	Nb	-6.5	Cr ₂ GaC, Nb ₂ GaC	
Ga	Mn	Y	-4.9	YGa ₂ , C, Mn ₂₃ C ₆ , Y ₁₀ Mn ₁₃ C ₁₈	
Ga	SC Ti	Cr	-4.7	$(Ur_{2/3}SC_{1/3})_2GaU, ScGa_2, Sc_3GaU, Sc_2UrU_3$	
Ga	Zr	W	-3.1	ZrC. W. ZrGa ₃	
Ga	Nb	Y	-1.8	YGa ₂ , Nb ₂ C, Nb ₆ C ₅ , Y ₅ Ga ₃	
Ga	Cr	Та	-0.5	Cr ₂ GaC, Ta ₂ C, CrGa ₄ , Cr ₂₃ C ₆	
Ga	Fe	Sc	-0.1	C, Sc ₃ FeC ₄ , ScGa ₆ Fe ₆ , Fe ₃ Ga	
Ge	Sc	W	-45.5	ScGe ScoWGeCo WC	
Ge	Sc	v	-11.8	ScGe, C, Sc ₃ GeC, V ₆ C ₅	
Ge	Cr	Sc	-9.5	ScCrGe ₂ , Cr ₃ C ₂ , ScGe, C	
Ge	Sc	Cr	-5.2	ScGe, ScCrC ₂ , Cr ₃ C ₂ , C	
In	SC	VV Sc	-9.7	Sc2WINC2, W, SCIN3, SC3INC	
Pd	Sc	Y	-12.1	ScPd. Y_4C_5 , Sc_4C_3 , Y_2C	
Pd	Ti	Ŷ	-0.4	TiC _{0.75} , YPd ₃ , Y	
Pt	Ti	Zr	-22.2	TiC _{0.875} , TiPt, Zr9Pt ₁₁ , Ti ₃ Pt	
Pt	V	Zr	-0.8	V ₂ C, V ₆ C ₅ , ZrPt ₃ , Zr9Pt ₁₁	
Si	Sc	W	-44.1	Sc_2WSIC_2 , SIC , $Sc_2W_3Si_4$, Sc_5Si_3	
Si	Mn	Sc	-29.9 -13.4	MnSi, Sc3C4, Mn3Si, C	
Si	Sc	Mo	-4.0	Sc ₃ C ₄ , Sc ₂ Mo ₃ Si ₄ , C, Sc ₅ Si ₃	
Si	Sc	V	-1.2	Sc ₅ Si ₃ C _{0.5} , SiC, V ₆ C ₅ , C	
Si	V	Sc	-1.2	SiC, V ₆ C ₅ , Sc ₂ V ₃ Si ₄ , Sc ₅ Si ₃ C _{0.5}	
∠n Zn	Mo Mo	Sc	-99.8	SC_3U_4 , SC_3Zn_{17} , $Mn_{23}U_6$, $SCZn_3$ $Mo_3C_4Sc_{29}Mo_{1/2}$, $ZnC_5C_5Sc_7n_{17}$	
Zn	Cr	Sc	-57.4	ScZn ₃ , Cr ₇ C ₃ , Sc ₂ CrC ₃	
Zn	Fe	Sc	-52.9	Fe, C, Sc ₃ FeC ₄ , Sc ₃ Zn ₁₇	
Zn	V	Hf	-52.7	V ₂ ZnC, HfC, Hf ₃ Zn ₃ C, V ₂ C	
Zn	V	Zr	-45.5	V_2C , ZrC , $ZrZn_3$	

Supplementary Table 4. 92 *i*-MAX phases predicted stable. Synthesized phases in bold.

Zn	Sc	W	-42.4	(W _{2/3} Sc _{1/3}) ₂ ZnC, ScZn ₂ , Sc ₄ C ₃ , W
Zn	Sc	Мо	-41.1	(Mo _{2/3} Y _{1/3}) ₂ ZnC, YZn, Y ₂ C, Y ₄ C ₅
Zn	Мо	Y	-38.7	Mo ₂ C, YZn ₃ , (Y _{2/3} Mo _{1/3}) ₂ ZnC, YMoC ₂
Zn	Ti	Zr	-31.5	TiC _{0.75} , Zr ₃ Zn ₃ C, Ti ₂ C, Ti ₃ Zn ₃ C
Zn	Cr	Zr	-31.5	ZrC, ZrZn ₁₆ , Cr ₂₃ C ₆ , Cr ₇ C ₃
Zn	V	Sc	-30.1	ScZn ₂ , ScZn, V ₂ C, V ₆ C ₅
Zn	Mn	Zr	-27.5	Zn, ZrC, Mn ₂₃ C ₆ , MnZn ₃
Zn	Co	Sc	-26.7	Co, C, Sc ₃ C ₄ , Sc ₃ Zn ₁₇
Zn	Ti	Hf	-18.4	HfC _{0.875} , Ti ₃ Zn ₃ C, Ti ₂ C, Ti ₂ Zn
Zn	V	Nb	-13.4	V ₂ C, NbZn ₃ , Nb ₆ C ₅ , V ₆ C ₅
Zn	Υ	Мо	-11.8	(Mo _{2/3} Y _{1/3}) ₂ ZnC, YZn, Y ₂ C, Y ₄ C ₅
Zn	Fe	Y	-10.2	Fe, C, YZn ₃ , Y ₃ C ₄
Zn	Мо	Zr	-8.3	ZrC, Mo, Mo ₂ C, MoZn ₆
Zn	W	Sc	-6.3	WC, W, (Sc _{2/3} W _{1/3}) ₂ ZnC, ScZn ₃
Zn	Υ	W	-5.5	YZn, YWC ₂ , W, YZn ₃
Zn	Nb	Zr	-3.1	Nb ₂ C, ZrC, ZrZn ₃
Zn	Cr	Nb	-0.4	Zn, Nb ₆ C ₅ , Cr ₇ C ₃ , Cr ₂₃ C ₆

A	М'	M	Δ <i>H</i> _{disorder} (meV/atom)	ΔG _{disorder} (meV/atom)	Equilibrium simplex	Status
Ag	Ti	Hf	46.4	-8.4	TiAg, HfC, TiC _{0.75} , Ag	
Ag	Ti Zr	Zr Ti	48.5	-6.3	TiC _{0.75} , ZrAg, Ag	
ΔI	Ta	Ti	-18.3	-0.7	TaoC TaTioAlCo (0-MAX) TiAlo TaAlo	synthesized
A	Ti	Та	-16.5	-71.4	Ti_2AIC , $TaTi_2AIC_2$ (o-MAX), Ta_2C , $TiAl_2$	synthesized
AI	Ti	Nb	-9.1	-64.0	NbTi ₂ AlC ₂ (D), Ti ₂ AlC, Nb ₂ Al, NbAl ₃	synthesized
AI	Nb	Ti	-8.5	-63.4	TiNb ₂ AlC ₂ (o-MAX), Nb ₂ Al, NbTi ₂ AlC ₂ (D), NbAl ₃	synthesized
AI	Ti	W Ti	-6.4	-61.3	WTi ₂ AIC ₂ (C), C, Ti ₃ AIC ₂ , TiAI ₃	synthosizod
AI	Ťi	v	2.8	-52.1	Ti2AIC, V2AIC	synthesized
AI	Та	Hf	4.8	-50.0	HfTa ₂ AlC ₂ (C), HfAl ₂ , Ta ₂ C	synthesized
AI	v	Cr	4.9	-50.0	V ₂ AIC, Cr ₂ AIC	synthesized
AI	Cr	V 7	8.1	-46.8	Cr ₂ AIC, V ₂ AIC	synthesized
	Hf	Ta	11.2	-43.7	$H_{2}AIC_{3}$, $ZI_{5}AI_{4}$, $H_{2}ZI_{5}$ $H_{2}AIC_{2}$ $H_{5}AI_{2}$ $T_{2}C_{5}$	synulesized
Al	Nb	Ta	12.5	-42.4	Nb ₂ AIC, Ta ₂ C, TaNb ₂ AIC ₂ (o-MAX), NbAl ₃	
Al	V	W	14.8	-40.0	W, WAI ₅ , WC, V ₁₂ AI ₃ C ₈	
A	Cr	Mn	15.0	-39.8	Cr ₂ AIC, Mn ₃ AIC, MnAI, C	synthesized
AI	Zi Mn	Cr	16.7	-38.0	Cr_2AIC_2 (0-10IAA), ZI_4AIC_3 , $ZIAI_2$, ND_2AI $Cr_2AIC_3AIC_4AIC_5$, $AIAI_2$, ND_2AI	synulesized
AI	Та	V	19.6	-35.3	Ta ₂ AIC, V ₂ AIC	
AI	Nb	Sc	22.1	-32.8	Sc ₃ AIC, NbAI ₃ , Nb ₁₂ AI ₃ C ₈ , Nb ₂ AIC	synthesized
AI	Ň	Та	22.8	-32.0		synthesized
	та Ті	ND Hf	25.1	-29.8	Ta2C, NDAI3, TAND2AIC2 (O-MAX), TA12AI3C8	
AI	Nb	Hf	26.1	-28.7	Hf2Nb2AlC3, Nb2Al, NbAl3	
Al	Ti	Мо	27.9	-26.9	Ti_4AIC_3 , Mo ₃ AI, Mo ₃ AI ₈	
AI	Cr	Ti	28.4	-26.5	TiCr ₂ AlC ₂ (o-MAX), Cr ₂ Al, TiAl ₃ , TiC	synthesized
AI	la ⊔r	Zr Ti	29.6	-25.2	$ZrAl_2, ZrC, Ta_2C, Ta_{12}Al_3C_8$	
AI	Zr	Та	30.2	-24.7	Ta ₂ C, Zr_4AlC_3 , Zr_4Al_2 , Zr_2Al_3	
AI	Nb	V	31.2	-23.6	Nb ₂ AIC, V ₂ AIC	synthesized
Al	Та	Sc	33.4	-21.4	ScTa ₂ AlC ₂ (C), ScAl ₂ , Ta ₂ C	
AI	Hf	Nb	33.5	-21.3	Hf ₄ AlC ₃ , Nb ₂ Al, NbAl ₃	es un the e size of
AI	V Cr	Mo	35.6	-21.2	V2AIC, ND2AIC Cr3C2, MO3AI, MO3AI8, C	synthesized
Al	Zr	Hf	36.0	-18.8	HfZr ₂ AlC ₂ (o-MAX), Zr ₂ Al ₃ , ZrAl	
AI	Mn	Fe	38.7	-16.1	Mn ₃ AIC, C, Fe ₃ AIĆ, Fe ₅ Al ₈	
AI	Ti	Cr 7	39.8	-15.0	TiC, Cr_2AI , Ti AI_3 , Ti $_4AIC_3$	synthesized
	пі Мо	V	40.8 41 4	-14.0	$H_{4}A_{1}C_{3}$, $Z_{1}_{2}A_{1}_{3}$, $Z_{1}A_{1}$ C. MO2AL V&C5 MOAL2	
Al	Мо	Ċr	41.5	-13.3	C, Mo ₃ Al, Cr ₂ Al, Mo ₃ Al ₈	
AI	Zr	Ti	44.1	-10.8	Zr ₃ AIC ₂ , Ti ₂ AIC, Zr ₄ AI ₃ , Zr ₂ AI ₃	synthesized
AI	V	Мо	45.5	-9.4	Mo_3AI , V_6C_5 , Mo_3AI_8 , $V_{12}AI_3C_8$	
AI AI	Mn Mn		47.7	-7.2	C, MIN3AIC, MO3AI, MO3AI8 MINAL C. MasalaCa, MaCa	
AI	Cr	Fe	49.4	-5.5	Cr_2AIC , Fe_3AIC , C , Fe_5AI_8	
Al	W	Ti	50.2	-4.6	C, $Ti_2W_2AIC_3$ (o-MAX), WAI_5	
AI	Mo	Mn	50.9	-4.0	C, Mo ₃ Al, Mn ₃ AlC, Mo ₃ Al ₈	
AI AI	Cr Mo	VV Nh	52.8 54.6	-2.0	C MO2AL NbcCs MO2Als	
Au	Nb	Та	1.1	-53.8	NbAu ₂ , Ta ₂ C, Nb ₆ C ₅ , Nb ₂ C	
Au	Та	Nb	3.7	-51.1	Ta ₂ C, Au, NbAu ₂ , Nb ₆ C ₅	
Au	V T-	Ta	17.8	-37.1	V_2 AuC, Ta ₂ C, Au	
AU	ıa Nh	v V	18.8	-30.U -31 1	razo, Au, VzAuo NbzAuc, VzAuc	
Au	Ti	Nb	24.6	-30.2	TiA ₂ , Ti ₃ AuC ₂ , Nb ₂ C	
Au	V	Nb	24.7	-30.1	V ₂ AuC, Nb ₂ AuC	
Au	Ti	Ta T:	27.9	-27.0	TiAu ₂ , Ti ₂ AuC ₂ , Ta ₂ C	
Au	Ti	V	20.0	-20.3	TIAU ₂ , ND ₂ C, ND ₆ C ₅ , TI ₃ AUC ₂ TIAU ₂ , TI ₂ AUC ₂ , V ₂ C	
Au	Zr	н́f	32.4	-22.4	HfC, $ZrC_{0.875}$, $ZrAu_2$, Zr_2Au	
Au	Та	Ti	33.1	-21.7	TiAu ₂ , Ta ₂ C, Ta ₄ C ₃ , Ti ₃ Au ₂ C ₂	
Au	V T:	Ti	34.6	-20.2	TiAu ₂ , V_2C , Ti ₃ Au ₂ C ₂ , V_6C_5	
Au	11 7r	пī Ti	38.1 38.0	-10.7 -15 Q	Πις, ΠβΑυς, ΠΙΑυς, ΠβΑU ZrC0.875 ZrAu2 TiC0.75 ΤίρΑμ	
Au	Ηf	Zr	41.6	-13.9	HfC , $HfAu$, $ZrAu_2$, Zr_2Au	
Au	Hf	Ti	46.3	-8.6	HfC, HfAu ₂ , Ti ₃ Au, Ti ₃ AuC ₂	
Au	V	Cr	49.7	-5.2	Au, Cr, V_2C , V_6C_5	
Au Au	V Hf	M0 Nh	51.3 51 0	-3.5 _2 0	Au, Mo, V ₂ C, V ₆ C ₅ HfC, HfAu ₂ , HfAu, Nb ₂ C	
Au	Ti	Mo	52.0	-2.9	$Ti_3Au_2C_2$, Mo, Mo ₂ C, TiAu ₄	
Au	Та	Мо	52.5	-2.3	Au, Mo, Ta ₄ C ₃	
Au	Zr	Nb	52.7	-2.2	ZrC _{0.875} , ZrAu ₂ , Nb ₂ C, Zr ₂ Au	

Supplementary Table 5. 291 stable MAX phases with solid solution of M' and M''. Synthesized phases in bold.

A., MI- M-	50.4	47	Are Ma Nile O. Nile Are	
<u>AU ND MO</u> Ga Ta Ti	-36.9	-1.7	Au, Mo, Nb ₆ C ₅ , NbAu ₂	
Ga Ti Ta	-35.3	-90.2	Ti ₂ GaC, Ta ₂ GaC	
Ga Ti W	-24.7	-79.5	W, Ti ₃ GaC ₂ , WC, TiGa ₃	
Ga Ti Nb	-19.1	-73.9	Ti ₂ GaC, Nb ₂ GaC	
Ga ND TI Ga Sc Ta	-16.9	-73.7	ND2GAC, H2GAC	
Ga Ta Hf	-13.6	-68.4	TaoGaC, HfG2, Hf3GaC2, TaoC	
Ga Nb Sc	-13.0	-67.9	(Sc _{2/3} Nb _{1/3}) ₂ GaC, Nb ₂ GaC	
Ga Hf Ta	-10.9	-65.8	HfGa ₂ , Hf ₃ GaC ₂ , Ta ₂ C	
Ga Ti Mo	-8.0	-62.9	Ti ₃ GaC ₂ , Ti ₂ MoGaC ₂ (o-MAX), Mo ₃ Ga, MoGa ₄	
GaSCND GaNb Zr	-/./	-62.6	$(ND_{2/3}SC_{1/3})_2GaU, SC_3GaU, SCGa_2, SC_3U_4$	
Ga Ti V	-2.9	-57.5	Ti2GaC, ZIGa, ZI3GaC2	
Ga V Ti	-2.0	-56.8	V ₂ GaC, Ti ₂ GaC	
Ga Ta Nb	-2.0	-56.8	Ta2GaC, Nb2GaC	
Ga Nb Ta	-1.9	-56.8	Nb ₂ GaC, Ta ₂ GaC	
GaND Hf Co. Zr. Nh	-1.8	-56.7	Nb2GaC, HT3GaC2, Nb5Ga4, Nb5Ga13	
Ga Zi ND Ga Ta Sc	6.2	-33.3	$ND_2GaC, ZIGa, ZI_3GaC_2$ ScGa2 (Sc2)/Za(2)/GaC, Ta2C, Ta(C2)	
Ga Hf Nb	6.4	-48.4	$H_{3}GaC_{2}$, Nb ₂ GaC, Nb ₅ Ga ₄ , Nb ₅ Ga ₁₃	
Ga V Cr	6.5	-48.3	V2GaC, Cr2GaC	
Ga Cr V	8.2	-46.7	Cr ₂ GaC, V ₂ GaC	
Ga V Mo	8.9	-46.0	V ₆ C ₅ , V ₂ GaC, MoG ₄ , Mo ₃ Ga	
GalaZí GaZr Ta	10.7	-44.2	13403, 213035, 1320, 2130302 $7r_{0}C_{0}$ Ta ₂ C, $7r_{0}C_{0}$ Ta ₂ C, $7r_{0}C_{0}$	
Ga Mn Cr	11.9	-43.0	Mn_2GaC_2 , Ta_2C_2 , Za_3Ca_5 , Ta_4C_3 Mn_2GaC_2 , Cr_2GaC_3	synthesized
Ga Cr Ti	14.2	-40.7	Cr ₂ GaC, Ti ₃ GaC ₂ , CrGa ₄ , Cr ₂₃ C ₆	-,
Ga Mo V	14.2	-40.7	Mo ₂ Ga ₂ C, Mo ₃ Ga, V ₆ C ₅ , Mo ₂ C	
Ga Cr Mn	14.8	-40.0	Cr ₂ GaC, Mn ₂ GaC	synthesized
Ga Ta V	16.7	-38.2	Ta2GaC, V2GaC	
Ga Hr II Ga V Ta	18.8	-36.0	Hī2GAC, H2GAC	
Gavia GaTiHf	19.0	-35.8	TioGaC, HooGaC	
Ga Ti Cr	19.1	-35.7	Ti_3GaC_2 , $CrGa_4$, Cr , $Cr_{23}C_6$	
Ga Mo Nb	22.8	-32.0	Mo ₂ Ga ₂ C, Nb ₄ GaC ₃ , Mo ₂ C, Mo ₃ Ga	
Ga Cr Mo	24.8	-30.1	Cr ₂ GaC, Mo ₂ Ga ₂ C, Mo ₂ C	
Ga Nb Mo	25.2	-29.7	Nb ₄ GaC ₃ , Mo ₃ Ga, MoGa ₄	
Ga Mo Cr	26.5	-28.4	Mo2Ga2C, Cr2GaC, Mo2C	
Ga Will V Ga V W	20.0	-20.2	V_2 GaC, W_2 GaC	
Ga V Mn	20.0	-27.9	V2GaC, Mn2GaC	
Ga Nb V	28.5	-26.3	Nb ₂ GaC, V ₂ GaC	
Ga V Nb	30.6	-24.3	V2GaC, Nb2GaC	
Ga Mo Ti	31.6	-23.2	Mo ₂ TiGaC ₂ (o-MAX), (Ti _{2/3} Mo _{1/3}) ₂ GaC, Mo ₃ Ga, MoGa ₄	
Ga Zr Hr Ga Min Mo	32.0	-22.2	$ZrGa, HTC, Zr_3GaC_2$	cunthocizod
Ga Mn Fe	34.2	-21.9	Mn_2GaC , Mo_2Ga_2C , Mo_2C Mn_2GaC , C , Ee_2Ga , $EeGa_2$	Synthesized
Ga Mo Mn	34.3	-20.6	Mn2GaC, Mo2Ga2C, Mo2C	svnthesized
Ga Ti Zr	36.8	-18.0	ZrGa, Ti ₃ GaC ₂ , Zr ₃ GaC ₂	,
Ga Hf Zr	40.7	-14.1	ZrGa, Hf₄GaC₃	
Ga Zr Ti	42.1	-12.8	ZrGa, Zr ₃ GaC ₂ , Ti ₃ GaC ₂	
Gala Mo	45.6	-9.2	Tatus, MosGa, MoGa4	
Ga Nb W	49.4	-5.5	Nb ₂ GaC WC W Nb ₅ Ga ₂	
Ga Ta W	49.7	-5.1	Ta ₂ GaC, WC, W, Ga	
Ga Hf V	53.8	-1.0	Hf ₂ GaC, V ₂ GaC	
Ge Sc Nb	-21.3	-76.2	ScGe, C, Nb ₆ C ₅ , Sc ₃ GeC	
Ge Ti Ta	-18.9	-73.8	Ti2GeC, Ta2GeC	
Ge la li Ge So To	-12.5	-6/.3	182080, 112080 ScGe TaC ScaGeC C	
Ge Hf Ta	-9.4	-04.2	Hf2GeC Ta2GeC	
Ge Ti Nb	0.0	-54.8	Ti2GeC, NbGe2, Nb5Ge3C	
Ge Ta Hf	2.4	-52.4	Ta ₂ GeC, Hf ₂ GeC	
Ge Nb Sc	2.5	-52.4	(Sc _{2/3} Nb _{1/3}) ₂ GeC, Nb ₄ GeC ₃	
Ge Nb Ti	2.5	-52.4	Nb ₂ GeC, Ti ₃ GeC ₂ , NbGe ₂ , Nb ₅ Ge ₃ C	
GEV TI	5.8	-49.1		synthesized
Ge 7r Nh	0.2 8.9	-40.0 -45 9	ZrGe, ZrC, ZrGeo, NbaCa	synunesized
Ge Ti Mo	10.2	-44.6	Ti ₃ GeC ₂ , MoGe ₂ , Mo ₂ C. Mo ₃ Ge	
Ge Nb Zr	10.3	-44.5	ZrGe, ZrGe ₂ , Nb ₆ C ₅ , Nb ₂ GeC	
Ge Nb Ta	11.4	-43.5	TaC, Nb ₂ GeC, NbGe ₂ , Nb ₅ Ge ₃ C	
Ge Cr V	11.6	-43.3	Cr ₂ GeC, Ge, Cr ₃ Ge, V ₆ C ₅	synthesized
GeV Cr	11.9	-43.0	Ge, Cr_3Ge , V_2GeC , V_6C_5	synthesized
Ge la Sc Co Ti W	14.3	-40.5		
Ge Ta V	16.9	-38.6	TableC, VVC, VV, Ge	
Ge V Ta	17.5	-37.4	V2GeC. Ta2GeC	
Ge Mo Ti	18.0	-36.9	Mo ₂ C, MoGe ₂ , Ti ₃ GeC ₂ , C	
Ge Ta Nb	18.4	-36.5	NbGe ₂ , Ta ₄ C ₃ , Ta ₂ GeC, Nb ₅ Ge ₃ C ₅	

Ge Hf Ti	19.6	-35.3	Hf ₂ GeC, Ti ₂ GeC	
Ge Ti Hf	19.8	-35 1	TioGeC HfoGeC	
Go Cr Ti	24.3	30.5	Cr.GoC Ti.GoC. Go Cr.Go	
	24.3	-30.5		
Ge Sc Zr	24.3	-30.5	ScGe, ZrC, Sc3GeC, C	
Ge Zr Sc	24.6	-30.3	ZrC, ScGe, ZrGe	
Ge Nb V	28.4	-26.4	Nb2GeC V2GeC	
	20.2	26.1	V-CoC Nb-CoC	
Ge V IND	29.3	-25.5		
Ge Nb Hf	29.5	-25.3	HfC, NbGe ₂ , Nb ₅ Ge ₃ C, Nb ₂ GeC	
Ge Zr Ta	30.1	-24 8	ZrGe TaC ZrC	
Co Cr Mn	20.7	24.1	MnCo CriCi Co C	ounthooized
Ge Cr Min	30.7	-24.1		synthesized
Ge Zr Mo	31.5	-23.3	ZrC, ZrGe ₂ , Mo ₃ Ge, MoGe ₂	
Ge Nb Mo	31.9	-23.0	MoGe ₂ , Nb ₆ C ₅ , Nb ₂ GeC, Mo ₃ Ge	
Go So Ti	32.0	22.9	Seco Tic Secoc C	
	52.0	-22.0		
Ge Ti Cr	34.5	-20.4	H ₃ GeC ₂ , Ge, Cr ₃ Ge, Cr ₂ GeC	synthesized
Ge Hf Nb	35.3	-19.6	HfC, NbGe₂, Hf₂Nb₃Ge₄	
Go Zr Ti	20.0	15.0		
	39.9	-13.0		
Ge Ht Zr	40.6	-14.2	HTC, ZrGe, HT2GeC	
Ge Zr Hf	42.4	-12.5	ZrGe ₂ , HfC, ZrC	
Ge V Mo	42.6	-12.3	MoGeo VoGeC VoCr MooGe	
	40.4	-12.0		
Ge Min Cr	43.1	-11.7		
Ge V Mn	43.7	-11.2	MnGe, V ₂ GeC, V ₆ C ₅ , Ge	
Ge Mo Nb	44 1	-10.8	MoC MoGeo MooGw NbeCa	
	45 1	0.0	ZrC MaCa, MarC MarCa	
	45.1	-9.0		
Ge li Zr	48.7	-6.2	ZrGe, H ₃ GeC ₂ , ZrC	
Ge Sc Hf	50.8	-4.1	ScGe, HfC, Sc3GeC, C	
Ge Ta Zr	51.2	-37	TayCo ZrGe ZrGeo	
	51.2	-3.7	10400, 2100, 21002	
Ge Ht Sc	52.3	-2.6	SCGe, HTC, HT2GeC,	
Ge Ti Sc	52.7	-2.1	ScGe, Ti ₄ GeC ₃	
Ge Nh Cr	53.2	-1.6	NhoGeC NhGeo CroCo	
	55.2	-1.0		
Ge Mo V	54.4	-0.5	$MOGe_2$, MO_2C , V_6C_5 , C	
In Nb Sc	-15.5	-70.4	Nb ₂ InC, ScIn ₂ , Sc ₃ InC, Nb ₆ C ₅	
In Nh Ti	-12 9	-67 7	NhalnC TialnC	
In Ti Nh	11.0	66.9	Ti InC Nh InC	
	-11.9	-00.8	$\Pi_2 \Pi C$, $ND_2 \Pi C$	
In Nb Hf	-4.9	-59.8	Nb ₂ InC, Hf ₂ InC	
In Ti Ta	-3.5	-58.3	TioInC TaoC In	
In Lif Nb	2.6	57.5	HfelpC NbelNC	
	-2.0	-57.5		
In Nb Zr	-2.5	-57.3	Nb ₂ InC, Zr ₂ InC	
ln Zr Nb	-0.2	-55.0	ZraInC, NbaInC	
In So Mo	0.2	E4 6	(Ma Sa) InC Sa MainC Sa InC Sain	
	0.2	-54.0	(1102/3001/3)2110, 3021101102, 303110, 30113	
In Zr Hf	0.5	-54.4	Zr ₂ InC, Hf ₂ InC	
In Hf 7r	0.5	-54.3	HfaInC ZraInC	
In Ti V	0.0	E2 0	Ti-InC V-C In	
in li v	Z. I	-52.8	$11_{2}110, V_{2}0, 111$	
In Sc Nb	3.0	-51.9	Sc3InC, ScIn3, Nb6C5, C	
In V Ti	70	-47 8	V ₂ C In Ti ₂ InC	
In Ti Mo	15.0	20.0	In TilleC Me Me C	
	15.0	-39.9	111, 11311102, 1010, 101020	
In Ht Ia	15.6	-39.2	Ht ₂ InC, Ta ₂ C, In	
In Sc Ta	15.7	-39.1	TaC, ScalnC, Scina, Ta ₄ C ₃	
In 7r Ta	16.2	-38.7	ZrolnC TaoC In	
	10.2	-30.7		
In Ht Ti	17.1	-37.8	Ht ₂ InC, 1 ₁₂ InC	synthesized
In Ti Hf	17.3	-37.5	Ti ₂ InC, Hf ₂ InC	synthesized
In Ta Ti	18 1	-36.7	TaoC In TioInC	,
	20.5	24.4		
In IND Ta	20.5	-34.4	ND_2InC , Ta_2C , In	
In Nb V	24.0	-30.9	Nb ₂ InC, V ₂ C, In	
In Zr Sc	26.6	-28.2	ZraInC ZrC Scina ScainC	
In V Nh	27.5	_27.2	V _o C In NbolnC	
	21.0	-21.3		
in 2r li	28.8	-26.1		synthesized
ln Ti Zr	29.4	-25.4	Ti2InC, Zr2InC	synthesized
In Ta Sc	30.4	-24 4	ScIn ₂ , Ta ₄ C ₃ , Ta ₂ C, Sc ₂ InC	-
In Mo So	36.6	_10 2	(ScoreMoure)olnC MooC In	
	00.0	-10.3		
in la Hf	36.8	-18.0	i a ₂ C, in, Hī ₂ inC	
ln Ta Zr	37.4	-17.4	Ta ₂ C, In, Zr ₂ InC	
In 7r Mo	38.7	-16 1	ZrC In Mo ZraInC	
	20.0	45.0		
	.1910	-10.9	ні2ню, пю, зозіно, зоін2	
	00.0			
In Mo Ti	39.9	-14.9	In, Mo ₂ C, Ti ₃ InC ₂ , Mo	
In Mo Ti In V Ta	39.9 40.0	-14.9 -14.9	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C	
In Mo Ti In V Ta In Ta Nb	39.9 40.0 44 1	-14.9 -14.9 -10.8	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC	
In Mo Ti In V Ta In Ta Nb	39.9 40.0 44.1	-14.9 -14.9 -10.8	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC	
In Mo Ti In V Ta In Ta Nb In Sc Zr	39.9 40.0 44.1 49.9	-14.9 -14.9 -10.8 -4.9	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, ScIn ₂ , Sc ₃ InC	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V	39.9 40.0 44.1 49.9 52.2	-14.9 -14.9 -10.8 -4.9 -2.7	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, ScIn ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo	39.9 40.0 44.1 49.9 52.2 52 5	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, ScIn ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In. Mo. Nb ₂ InC, Nb ₆ C ₅	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Mb Mo	39.9 40.0 44.1 49.9 52.2 52.5	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, ScIn ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr	39.9 40.0 44.1 49.9 52.2 52.5 36.5	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.3	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, ScIn ₂ , Sc ₃ InC H ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅ VPd3, V ₆ C ₅ , Cr ₂₃ C ₆ , Cr	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr Pd Cr V	39.9 40.0 44.1 49.9 52.2 52.5 36.5 39.9	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.3 -15.0	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, ScIn ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅ VPd ₃ , V ₆ C ₅ , Cr ₂ C ₆ , Cr VPD ₃ , Cr ₃ C ₂ , Cr ₇ C ₃ , V ₆ C ₅	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr Pd Cr V Pd Ti V	39.9 40.0 44.1 49.9 52.2 52.5 36.5 39.9 42.4	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.3 -15.0 -12.5	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, ScIn ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅ VPd ₃ , V ₆ C ₅ , Cr ₃ C ₆ , Cr VPD ₃ , Cr ₃ C ₂ , Cr7C ₃ , V ₆ C ₅ TiC ₀ 7 ₅ , TiPd ₂ , V ₂ C, TiC ₀ a ₇₅	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr Pd Cr V Pd Ti V Pd Ti Ta	39.9 40.0 44.1 49.9 52.2 52.5 36.5 39.9 42.4 42.7	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.3 -15.0 -12.5 -11.1	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, ScIn ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅ VPd ₃ , V ₆ C ₅ , Cr ₂ C ₃ C ₆ , Cr VPD ₃ , Cr ₃ C ₂ , Cr ⁷ C ₃ , V ₆ C ₅ TiC ₀ .75, TiPd ₂ , V ₂ C, TiC _{0.875} TiPd ₅ , TiC _{0.275} , Ta ₂ C, TiC _{0.875}	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr Pd Cr V Pd Ti V Pd Ti Ta	39.9 40.0 44.1 49.9 52.2 52.5 36.5 39.9 42.4 43.7	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.3 -15.0 -12.5 -11.1	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, Scla ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅ VPd ₃ , V ₆ C ₅ , Cr ₂ C ₃ C ₆ , Cr VPD ₃ , Cr ₃ C ₂ , Cr7C ₃ , V ₆ C ₅ TiC _{0.75} , TiPd ₂ , V ₂ C, TiC _{0.875} TiPd ₂ , TiC _{0.75} , Ta ₂ C, TiC _{0.875}	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr Pd Cr V Pd Ti V Pd Ti Ta Pd Ti Nb	39.9 40.0 44.1 49.9 52.2 52.5 36.5 39.9 42.4 43.7 46.8	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.3 -15.0 -12.5 -11.1 -8.1	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, ScIn ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅ VPd ₃ , V ₆ C ₅ , Cr ₂ C ₇ C ₃ , V ₆ C ₅ TiC _{0.75} , TiPd ₂ , V ₂ C, TiC _{0.875} TiC _{0.75} , TiPd ₂ , TiC _{0.875} TiC _{0.75} , TiPd ₂ , TiC _{0.875} , Nb ₂ C	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr Pd Cr V Pd Ti V Pd Ti Ta Pd Ti Nb Pd V Mo	39.9 40.0 44.1 49.9 52.2 52.5 36.5 39.9 42.4 43.7 46.8 47.8	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.3 -15.0 -12.5 -11.1 -8.1 -7.1	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, ScIn ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅ VPd3, V ₆ C ₅ , Cr ₂ C ₃ C ₆ C VPD3, Cr ₃ C ₂ , Cr ⁷ C ₃ , V ₆ C ₅ TiC _{0.75} , TiPd ₂ , V ₂ C, TiC _{0.875} TiC _{0.75} , TiPd ₂ , V ₂ C, TiC _{0.875} TiC _{0.75} , TiPd ₂ , TiC _{0.875} , Nb ₂ C VPd3, Mo, Mo ₂ C, V ₆ C ₅	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr Pd Ti V Pd Ti V Pd Ti Ta Pd Ti Nb Pd V Cr	39.9 40.0 44.1 49.9 52.2 52.5 36.5 39.9 42.4 43.7 46.8 47.8 47.8	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.3 -15.0 -12.5 -11.1 -8.1 -7.1 -7.1	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, Scin ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅ VPd3, V ₆ C ₅ , Cr ₂ C ₃ C ₆ , Cr VPD3, Cr ₃ C ₂ , Cr7C ₃ , V ₆ C ₅ TiCo ₇ 5, TiPd ₂ , V ₂ C, TiC _{0.875} TiCo ₇ 5, TiPd ₂ , TiCo _{.875} TiCo ₇ 5, TiPd ₂ , TiCo _{.875} TiCo ₇ 5, TiPd ₂ , TiCo _{.875} , Nb ₂ C VPd3, Mo, Mo ₂ C, V ₆ C ₅ VPt ₂ V ₆ C ₅ Cr ² C ₂	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr Pd Cr V Pd Ti V Pd Ti V Pd Ti Nb Pd V Mo Pt V Cr Pt Cr V	39.9 40.0 44.1 49.9 52.2 52.5 36.5 39.9 42.4 43.7 46.8 47.8 47.8	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.3 -15.0 -12.5 -11.1 -8.1 -7.1 -40.4	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, ScIn ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅ VPd ₃ , V ₆ C ₅ , Cr ₂ C ₇ C ₃ , V ₆ C ₅ TiC _{0.75} , TiPd ₂ , V ₂ C, TiC _{0.875} TiPd ₂ , TiC _{0.75} , Ta ₂ C, TiC _{0.875} TiC _{0.75} , TiPd ₂ , Z ₂ C, TiC _{0.875} TiC _{0.75} , TiPd ₂ , TiC _{0.875} , Nb ₂ C VPd ₃ , Mo, Mo ₂ C, V ₆ C ₅ VPt ₂ , V ₆ C ₅ , Cr ₂ C ₂	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr Pd Cr V Pd Ti V Pd Ti Ta Pd Ti Nb Pd V Mo Pt V Cr Pt Cr V	39.9 40.0 44.1 49.9 52.2 52.5 36.5 39.9 42.4 43.7 46.8 47.8 14.5 23.6	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.3 -15.0 -12.5 -11.1 -8.1 -7.1 -40.4 -31.3	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr Pd Cr V Pd Ti Ta Pd Ti Nb Pd Ti Nb Pd V Mo Pt V Cr Pt Cr V Pt Cr V Pt V W	39.9 40.0 44.1 49.9 52.2 52.5 36.5 39.9 42.4 43.7 46.8 47.8 14.5 23.6 46.1	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.0 -12.5 -11.1 -8.1 -7.1 -40.1 -31.3 -8.7	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, ScIn ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅ VPd ₃ , V ₆ C ₅ , Cr ₃ C ₆ , Cr VPD ₃ , Cr ₃ C ₂ , Cr ₇ C ₃ , V ₆ C ₅ TiCo ₇ 5, TiPd ₂ , V ₂ C, TiC _{0.875} TiPd ₂ , TiCo ₇₅ , Ta ₂ C, TiC _{0.875} TiCo ₇₅ , TiPd ₂ , Z ₂ C, TiC _{0.875} TiCo ₇₅ , TiPd ₂ , TiC _{0.875} , Nb ₂ C VPd ₃ , Mo, Mo ₂ C, V ₆ C ₅ VPt ₂ , V ₆ C ₅ , Cr ₇ C ₃ , Cr ₃ C ₂ VPt ₂ , Cr ₃ C ₂ , V ₆ C ₅ , Cr ₇ C ₃ WPt ₂ , W, V ₆ C ₅ , VPt ₂	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr Pd Cr V Pd Ti V Pd Ti V Pd Ti Nb Pd V Mo Pt V Cr Pt Cr V Pt Cr V Pt V Ta	39.9 40.0 44.1 49.9 52.2 52.5 36.5 39.9 42.4 43.7 46.8 47.8 14.5 23.6 46.1 54.2	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.3 -15.0 -12.5 -11.1 -8.1 -7.1 -40.4 -31.3 -8.7 -0.6	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, Scln ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅ VPd ₃ , V ₆ C ₅ , Cr ₂ C ₃ C ₆ , Cr VPD ₃ , Cr ₃ C ₂ , Cr ⁷ C ₃ , V ₆ C ₅ TiC _{0.75} , TiPd ₂ , V ₂ C, TiC _{0.875} TiC _{0.75} , TiPd ₂ , V ₂ C, TiC _{0.875} TiC _{0.75} , TiPd ₂ , TiC _{0.875} , Nb ₂ C VPd ₃ , Mo, Mo ₂ C, V ₆ C ₅ VPt ₂ , V ₆ C ₅ , Cr ⁷ C ₃ , Cr ₃ C ₂ VPt ₂ , V ₆ C ₅ , Cr ⁷ C ₃ WPt ₂ , W ₂ C ₅ , V ₇ E ₂ Ta ₂ C ₂ , V ₆ C ₅ , Cr ⁷ C ₃ WPt ₂ , V ₆ C ₅ , V ₇ E ₂ Ta ₂ E ₂ , V ₆ C ₅ , Cr ² C ₃	
In Mo Ti In V Ta In Ta Nb In Sc Zr In Hf V In Nb Mo Pd V Cr Pd Ti V Pd Ti V Pd Ti Ta Pd Ti Nb Pd V Mo Pt V Cr Pt Cr V Pt Cr V Pt V Ta Si T	39.9 40.0 44.1 49.9 52.2 52.5 36.5 39.9 42.4 43.7 46.8 47.8 14.5 23.6 46.1 54.2	-14.9 -14.9 -10.8 -4.9 -2.7 -2.3 -18.3 -15.0 -12.5 -11.1 -8.1 -7.1 -40.4 -31.3 -8.7 -0.6	In, Mo ₂ C, Ti ₃ InC ₂ , Mo In, V ₂ C, Ta ₂ C Ta ₂ C, In, Nb ₂ InC ZrC, Scin ₂ , Sc ₃ InC Hf ₂ InC, V ₂ C, In In, Mo, Nb ₂ InC, Nb ₆ C ₅ VPd ₃ , V ₆ C ₅ , Cr ₂ C ₃ C ₆ , Cr VPD ₃ , Cr ₃ C ₂ , Cr7C ₃ , V ₆ C ₅ TiC ₀ .75, TiPd ₂ , V ₂ C, TiC _{0.875} TiPd ₂ , TiC _{0.75} , Ta ₂ C, TiC _{0.875} TiC _{0.75} , TiPd ₂ , TiC _{0.875} TiC _{0.75} , TiPd ₂ , TiC _{0.875} TiC _{0.75} , TiPd ₂ , TiC _{0.875} TiC _{0.75} , Cr7C ₃ , Cr ₃ C ₂ VPd ₃ , Mo, Mo ₂ C, V ₆ C ₅ VPt ₂ , V ₆ C ₅ , Cr7C ₃ , Cr ₃ C ₂ VPt ₂ , V ₆ C ₅ , Cr7C ₃ WPt ₂ , V ₂ C, V ₆ C ₅ , Ta ₂ C TiS ₁ C ₀ , TS ₁ C ₁ , Ta ₂ C, TiC ₁ C ₂	

Si V	Ti	11.4	-43.5	VSi ₂ , Ti ₃ SiC ₂ , V ₆ C ₅ , V ₅ Si ₃
Si Ta	Ti	14.6	-40.3	TaSi ₂ , Ti ₃ SiC ₂ , Ta ₄ C ₃ , TA ₅ Si ₃
Si Ti	V	20.4	-34.5	Ti ₃ SiC ₂ , VSi ₂ , V ₅ Si ₃ , V ₆ C ₅
Si Ta	Sc	22.4	-32.4	TaC, TaSi ₂ , Sc ₅ Si ₃ C _{0.5} , Ta ₄ C ₃
Si Sc	Та	32.2	-22.7	TaC, Sc ₅ Si ₃ C _{0.5} , SiC
Si V	Та	41.0	-13.8	VSi ₂ , Ta ₄ C ₃ , V ₆ C ₅ , V ₅ Si ₃
Si Ti	W	52.7	-2.1	Ti4SiC3, WSi2, W
Sn Sc	Nb	-20.5	-75.4	ScSn ₂ , Sc ₂ SnC, Sc ₃ SnC, Nb ₆ C ₅
Sn Zr	Sc	-16.1	-70.9	Zr_2SnC , Zr_2 , Sc_2Sn_2 , Sc_2SnC
Sn Sc	7r	-13.1	-67.9	$Zr_2 Sr_2, Zr_2, Sr_2 Sr_2$
Sn Nb	Ti	-2.2	-57 1	NhoSnC TioSnC
Sn Nb	Sc	-2.2	-56.9	$(S_{C_{2}(2)}Nb_{4}(2))$
Sn Ti	Nb	-2.1	-56.7	
Sn 7r	LIF	-1.3	-50.7	
Sn Llf	7r	-0.2	55.0	
Sn Sc		-0.2	-55.0	$T_{12}O_{10}$, $Z_{12}O_{10}$
Sn Llf	Nb	5.6	40.2	
Sh Hh		5.0	-49.Z	
		0.5	-40.4	
		7.0	-47.3	
		0.4	-40.5	ND2511C, Z12511C
Sn SC	IVIO	12.4	-42.4	
Sn Hf	Sc	12.8	-42.1	HfC, Hf2SnC, Sc6Sn5, ScSn2
Sn Hf	11	16.3	-38.6	Hf ₂ SnC, H ₂ SnC
Sn Ti	Hf	17.3	-37.6	Ti ₂ SnC, Hf ₂ SnC
Sn Ti	V	19.1	-35.7	Ti_2SnC , V_2C , Sn
Sn Sc	Ti	19.5	-35.4	Sc_2SnC , Ti_3SnC_2 , $ScSn_2$, Sc_3SnC
Sn Ti	Та	19.6	-35.3	Ti ₂ SnC, Ta ₂ C, Sn
Sn V	Ti	19.9	-34.9	V ₂ C, Sn, Ti ₂ SnC
Sn Nb	V	24.2	-30.6	Nb ₂ SnC, V ₂ C, Sn
Sn Sc	Hf	25.2	-29.6	HfC, ScSn ₂ , Sc ₃ SnC
Sn Zr	Ti	28.6	-26.2	Zr ₂ SnC, Ti ₂ SnC
Sn Ti	Sc	28.9	-26.0	Ti ₃ SnC ₂ , ScSn ₂ , Sc ₃ SnC, Sc ₆ Sn ₅
Sn Ti	Zr	30.1	-24.8	Ti ₂ SnC, Zr ₂ SnC
Sn V	Nb	31.0	-23.8	V ₂ C, Sn, Nb ₂ SnC
Sn Ti	Мо	31.8	-23.1	Sn, Ti ₃ SnC ₂ , Mo, Mo ₂ C
Sn Nb	Та	32.5	-22.3	Nb ₂ SnC, Ta ₂ C, Sn
Sn Hf	Та	36.8	-18.0	Hf ₂ SnC, Ta ₂ C, Sn
Sn Zr	Та	38.4	-16.5	Zr ₂ SnC, ZrSn ₂ , Ta ₂ C, Ta ₄ C ₃
Sn Zr	Мо	53.4	-1.5	Zr ₂ SnC, Mo ₂ C, Sn
Sn V	Та	54.7	-0.1	Sn, V ₂ C, Ta ₂ C
Sn Ta	Ti	54.8	-0.1	Ta ₂ C, Sn, Ti ₂ SnC
Zn V	Ti	15.4	-39.4	V ₂ ZnC, Ti ₃ Zn ₃ C, TiC, V ₂ C
Zn Mn	Fe	15.5	-39.4	C, Fe, FeZn ₁₃ , Mn ₂₃ C ₆
Zn Ti	V	25.4	-29.4	V ₂ C, TiC, Ti ₃ Zn ₃ C
Zn Ti	Nb	29.3	-25.5	TiC0 875, Nb2C, Ti3Zn3C, NbZn3
Zn Fe	Mn	29.6	-25.2	FeZn ₁₃ , Mn ₂₃ C ₆
Zn Nb	Ti	33.1	-21.7	Nb2C, TiC0.875, NbZn3, Ti3Zn3C
Zn Mn	Cr	33.9	-21.0	Zn. Cr ₃ C ₂ , C. Mn ₂₃ C ₆
Zn V	Ta	35.4	-19.5	V ₂ ZnC Ta ₂ C Zn
Zn Ti	Ta	36.9	-17 9	TiC Ti ₂ Zn ₂ C Ta ₂ C
Zn Ti	Mo	41 9	-12 9	TIC. Mo Ti ₂ Zn ₂ C. MoZn ₆
Zn Me	Co	42.8	-12.9	C_{0} Co ₂ D_{0} Co ₂ D_{10} Mp ₂₀ Ce
Zn To	Ti	40.0	-10.5	
∠n id Zn V	Cr	44.4	-10.3	a_20 , a_30 , a_{213}
∠[] V 7n N⊪		47.0	-1.4	LII, UI, V2LIU, V6U5
Zn NI-	ia V	01.0 50.5	-3.2	NUZ113, 1 a20, NU20, NU605
ZII IND	V	JZ.J	-2.3	NDLII3, V20, ND20, ND605
Zn Ur	IVITI	53.3	-1.5	

Supplementary Table 6. Statistics of the known and predicted quaternary *i*-MAX phases and solid solution MAX phases, categorized by the calculated thermodynamic stability, ΔH_{i-MAX} or ΔG_{solid} solution, and energy difference between order and solid solution phases, $\Delta H_{i-MAX} - \Delta G_{solid solution}$, at 2000 K. Metastable phases are categorized by their formation enthalpy above the convex hull. Units is in meV/atom.

Quaternary	Stability crite	Previously	Newly	
(M' _{2/3} M'' _{1/3}) ₂ AC phases	ΔH_{i-MAX} or ΔG_{solid} solution	ΔH_{i-MAX} - $\Delta G_{solid solution}$	known	Predicted
Stable <i>i</i> -MAX	$\Delta H_{i-MAX} < 0$	< 0	13	79
Nonstable or metastable <i>i</i> -MAX	$0 \le \Delta H_{i-MAX} \le +60 \text{ meV/atom}$	< 0	0	163
Stable solid solution MAX	$\Delta G_{\text{solid solution}} < 0$	> 0	34	257
Nonstable or metastable solid solution MAX	$0 \leq \Delta G_{\text{solid solution}} \leq +60 \text{ meV/atom}$	> 0	1	255

Supplementary Fig. 3. Calculated formation enthalpy as function of formation energy for $(M'_{2/3}M''_{1/3})_2AC$ phases. Experimentally reported *i*-MAX phases are represented by green triangles and MAX with disorder by orange squares.

Supplementary Fig. 4. Calculated formation enthalpy ΔH and Gibbs free energy of formation ΔG at (a) 0 K and (b) 2000 K for $(M'_{2/3}M''_{1/3})_2$ GaC. Symbols represent chemical order of lowest energy at given M' and M'' with *i*-MAX represented by black triangles or solid solution MAX by green circles. Experimentally reported phases are marked by green (*i*-MAX) or black (solid solution MAX) squares.

Supplementary Fig. 5. Calculated formation enthalpy ΔH and Gibbs free energy of formation ΔG at (a) 0 K and (b) 2000 K for $(M'_{2/3}M''_{1/3})_2$ InC. Symbols represent chemical order of lowest energy at given M' and M'' with *i*-MAX represented by black triangles or solid solution MAX by green circles. Experimentally reported phases are marked by green (*i*-MAX) or black (solid solution MAX) squares.

Supplementary Fig. 6. Calculated formation enthalpy ΔH and Gibbs free energy of formation ΔG at (a) 0 K and (b) 2000 K for $(M'_{2/3}M''_{1/3})_2$ SiC. Symbols represent chemical order of lowest energy at given M' and M'' with *i*-MAX represented by black triangles or solid solution MAX by green circles. Experimentally reported phases are marked by green (*i*-MAX) or black (solid solution MAX) squares.

Supplementary Fig. 7. Calculated formation enthalpy ΔH and Gibbs free energy of formation ΔG at (a) 0 K and (b) 2000 K for $(M'_{2/3}M''_{1/3})_2$ GeC. Symbols represent chemical order of lowest energy at given M' and M'' with *i*-MAX represented by black triangles or solid solution MAX by green circles. Experimentally reported phases are marked by green (*i*-MAX) or black (solid solution MAX) squares.

Supplementary Fig. 8. Calculated formation enthalpy ΔH and Gibbs free energy of formation ΔG at (a) 0 K and (b) 2000 K for $(M'_{2/3}M''_{1/3})_2$ SnC. Symbols represent chemical order of lowest energy at given M' and M'' with *i*-MAX represented by black triangles or solid solution MAX by green circles. Experimentally reported phases are marked by green (*i*-MAX) or black (solid solution MAX) squares.

Supplementary Fig. 9. Calculated formation enthalpy ΔH and Gibbs free energy of formation ΔG at (a) 0 K and (b) 2000 K for $(M'_{2/3}M''_{1/3})_2$ ZnC. Symbols represent chemical order of lowest energy at given M' and M'' with *i*-MAX represented by black triangles or solid solution MAX by green circles. Experimentally reported phases are marked by green (*i*-MAX) or black (solid solution MAX) squares.

Supplementary Fig. 10. Calculated formation enthalpy ΔH and Gibbs free energy of formation ΔG at (a) 0 K and (b) 2000 K for $(M'_{2/3}M''_{1/3})_2$ CuC. Symbols represent chemical order of lowest energy at given M' and M'' with *i*-MAX represented by black triangles or solid solution MAX by green circles. Experimentally reported phases are marked by green (*i*-MAX) or black (solid solution MAX) squares.

Supplementary Fig. 11. Calculated formation enthalpy ΔH and Gibbs free energy of formation ΔG at (a) 0 K and (b) 2000 K for $(M'_{2/3}M''_{1/3})_2$ NiC. Symbols represent chemical order of lowest energy at given M' and M'' with *i*-MAX represented by black triangles or solid solution MAX by green circles. Experimentally reported phases are marked by green (*i*-MAX) or black (solid solution MAX) squares.

Supplementary Fig. 12. Calculated formation enthalpy ΔH and Gibbs free energy of formation ΔG at (a) 0 K and (b) 2000 K for $(M'_{2/3}M''_{1/3})_2$ PdC. Symbols represent chemical order of lowest energy at given M' and M'' with *i*-MAX represented by black triangles or solid solution MAX by green circles. Experimentally reported phases are marked by green (*i*-MAX) or black (solid solution MAX) squares.

Supplementary Fig. 13. Calculated formation enthalpy ΔH and Gibbs free energy of formation ΔG at (a) 0 K and (b) 2000 K for $(M'_{2/3}M''_{1/3})_2$ AgC. Symbols represent chemical order of lowest energy at given M' and M'' with *i*-MAX represented by black triangles or solid solution MAX by green circles. Experimentally reported phases are marked by green (*i*-MAX) or black (solid solution MAX) squares.

Supplementary Fig. 14. Calculated formation enthalpy ΔH and Gibbs free energy of formation ΔG at (a) 0 K and (b) 2000 K for $(M'_{2/3}M''_{1/3})_2$ PtC. Symbols represent chemical order of lowest energy at given M' and M'' with *i*-MAX represented by black triangles or solid solution MAX by green circles. Experimentally reported phases are marked by green (*i*-MAX) or black (solid solution MAX) squares.

Supplementary Fig. 15. Calculated formation enthalpy ΔH and Gibbs free energy of formation ΔG at (a) 0 K and (b) 2000 K for $(M'_{2/3}M''_{1/3})_2$ AuC. Symbols represent chemical order of lowest energy at given M' and M'' with *i*-MAX represented by black triangles or solid solution MAX by green circles. Experimentally reported phases are marked by green (*i*-MAX) or black (solid solution MAX) squares

Supplementary Fig. 16. Calculated energy difference between relaxed *i*-MAX and MAX phase generated by Vegard's law structure as function of **a**,**b** atomic size difference of M' and M'' and c,d electronegativity difference of M' and M''. Experimentally known *i*-MAX phases are indicated by black triangles and solid solution MAX phases by green circles. The coloring represents the atomic radius (a,c) or electronegativity (b,d) of the A element.

Supplementary Fig. 17. Energy difference between *i*-MAX and solid solution MAX at 2000 K as function of **a**,**b** atomic size difference of M' and M'' and **c**,**d** electronegativity difference of M' and M''. Experimentally known *i*-MAX phases are indicated by black triangles and solid solution MAX phases by green circles. The coloring represents the atomic radius (a,c) or electronegativity (b,d) of the A element.

Supplementary Fig. 18. Energy difference between *i*-MAX and solid solution MAX at 0 K as function of **a**,**b** atomic size difference of M' and M'' and **c**,**d** electronegativity difference of M' and M''. Experimentally known *i*-MAX phases are indicated by black triangles and solid solution MAX phases by green circles. The coloring represents the atomic radius (a,c) or electronegativity (b,d) of the A element.

Supplementary Fig. 19. Calculated energy difference between relaxed *i*-MAX and MAX phase generated by Vegard's law structure, **b** interlayer distance between M' and M'' for relaxed *i*-MAX, and **c** ratio of next-nearest and nearest A-A distance within the A-layer, as function of atomic size difference of M' and M'' for $(M'_{2/3}M''_{1/3})_2AC$. Experimentally known *i*-MAX phases are indicated by black triangles and solid solution MAX phases by green circles. The coloring represents the electronegativity of the A element. Histograms are given for each axis.

Supplementary Fig. 20. Calculated energy difference between relaxed *i*-MAX and MAX phase generated by Vegard's law structure, **b** interlayer distance between M' and M'' for relaxed *i*-MAX, and **c** ratio of next-nearest and nearest A-A distance within the A-layer, as function of electronegativity difference of M' and M'' for $(M'_{2/3}M''_{1/3})_2AC$. Experimentally known *i*-MAX phases are indicated by black triangles and solid solution MAX phases by green circles. The coloring represents the atomic radius of the A element. Histograms are given for each axis.

Supplementary Fig. 21. Calculated energy difference between relaxed *i*-MAX and MAX phase generated by Vegard's law structure, **b** interlayer distance between M' and M'' for relaxed *i*-MAX, and **c** ratio of next-nearest and nearest A-A distance within the A-layer, as function of electronegativity difference of M' and M'' for $(M'_{2/3}M''_{1/3})_2AC$. Experimentally known *i*-MAX phases are indicated by black triangles and solid solution MAX phases by green circles. The coloring represents the electronegativity of the A element. Histograms are given for each axis.

Supplementary Fig. 22. Deviation in lattice parameters *a*, *b* and *c* between the relaxed *i*-MAX structure and the MAX phase structure generated by using Vegard's law as function of atomic size difference of M' and M'' for $(M'_{2/3}M''_{1/3})_2AC$. The coloring represents the atomic radius of the *A* element. Histograms are given for each axis.

Element	PBE potential	Valence states
Sc	Sc_sv	3s3p4s3d
Y	Y_sv	4s4p5s4d
Ti	Ti	4s3d
Zr	Zr_sv	4s4p5s4d
Hf	Hf_pv	5p6s5d
V	V_sv	3s3p4s3d
Nb	Nb_pv	4p5s4d
Та	Та	6s5d
Cr	Cr_pv	3p4s3d
Мо	Mo_pv	4p5s4d
W	W	6s5d
Mn	Mn_pv	3p4s3d
Fe	Fe_pv	3p4s3d
Co	Co	4s3d
Ni	Ni	4s3d
AI	Al	3s3p
Ga	Ga_d	4s4p3d
In	ln_d	5s5p4d
Si	Si	3s3p
Ge	Ge_d	4s4p3d
Sn	Sn_d	5s5p4d
Cu	Cu	4p3d
Zn	Zn	4p3d
Pd	Pd_pv	4p5s4d
Ag	Ag	5s4d
Pt	Pt_pv	5p6s5d
Au	Au	6s5 <i>d</i>
С	<u>C</u>	2s2p

Supplementary Table 7. PBE potentials for considered elements in this work.

REFERENCES

- 1. Schuster J. C., Nowotny H., Vaccaro C. The ternary systems: CrAlC, VAIC, and TiAlC and the behavior of H-phases (M₂AlC). *J Solid State Chem* **32**, 213-219 (1980).
- 2. Yeh C. L., Yang W. J. Formation of MAX solid solutions (Ti,V)₂AlC and (Cr,V)₂AlC with Al₂O₃ addition by SHS involving aluminothermic reduction. *Ceram Int* **39**, 7537-7544 (2013).
- 3. Yeh C.-L., Yang W.-J. Effects of Ti and TiO₂ on Combustion Synthesis of (Ti,V)₂AlC/Al₂O₃ Solid Solution Composites. *Materials and Manufacturing Processes* **30**, 292-297 (2015).
- 4. Han M., Maleski K., Shuck C. E., Yang Y., Glazar J. T., Foucher A. C., *et al.* Tailoring Electronic and Optical Properties of MXenes through Forming Solid Solutions. *J Am Chem Soc* **142**, 19110-19118 (2020).
- 5. Tian W., Sun Z., Hashimoto H., Du Y. Synthesis, microstructure and properties of (Cr_{1-x}V_x)₂AlC solid solutions. *J Alloys Compd* **484**, 130-133 (2009).
- 6. Caspi E. N., Chartier P., Porcher F., Damay F., Cabioch T. Ordering of (Cr,V) layers in nanolamellar (Cr_{0.5}V_{0.5})_{n+1}AlC_n compounds. *Mater Res Lett* **3**, 100-106 (2015).
- 7. Halim J., Chartier P., Basyuk T., Prikhna T., Caspi E. a. N., Barsoum M. W., *et al.* Structure and thermal expansion of $(Cr_x, V_{1-x})_{n+1}AlC_n$ phases measured by X-ray diffraction. *J Eur Ceram Soc* **37**, 15-21 (2017).
- 8. Horlait D., Grasso S., Al Nasiri N., Burr P. A., Lee W. E. Synthesis and Oxidation Testing of MAX Phase Composites in the Cr–Ti–Al–C Quaternary System. *J Am Ceram Soc* **99**, 682-690 (2016).
- 9. Scabarozi T. H., Gennaoui C., Roche J., Flemming T., Wittenberger K., Hann P., *et al.* Combinatorial investigation of (Ti_{1-x}Nb_x)₂AlC. *Appl Phys Lett* **95**, 101907 (2009).
- 10. Yeh C. L., Chen J. H. Combustion synthesis of $(Ti_{1-x}Nb_x)_2AlC$ solid solutions from elemental and Nb₂O₅/Al₄C₃-containing powder compacts. *Ceram Int* **37**, 3089-3094 (2011).
- 11. Salama I., El-Raghy T., Barsoum M. W. Synthesis and mechanical properties of Nb₂AlC and (Ti,Nb)₂AlC. *J Alloys Compd* **347**, 271-278 (2002).
- 12. Nowotny H., Rogl P., Schuster J. C. Structural chemistry of complex carbides and related compounds. *J Solid State Chem* **44**, 126-133 (1982).
- 13. Griseri M., Tunca B., Huang S., Dahlqvist M., Rosén J., Lu J., *et al.* Ta-based 413 and 211 MAX phase solid solutions with Hf and Nb. *J Eur Ceram Soc* **40**, 1829-1838 (2020).
- 14. Sridharan S., Nowotny H. Studies in the ternary system Ti-Ta-Al and in the quaternary system Ti-Ta-Al-C. *Z Metallkd* **74**, 468-472 (1983).
- 15. Tunca B., Lapauw T., Karakulina O. M., Batuk M., Cabioc'h T., Hadermann J., *et al.* Synthesis of MAX Phases in the Zr-Ti-Al-C System. *Inorg Chem* **56**, 3489-3498 (2017).
- Zapata-Solvas E., Hadi M. A., Horlait D., Parfitt D. C., Thibaud A., Chroneos A., *et al.* Synthesis and physical properties of (Zr_{1-x},Ti_x)₃AlC₂ MAX phases. *J Am Ceram Soc* 100, 3393-3401 (2017).
- Naguib M., Bentzel G. W., Shah J., Halim J., Caspi E. N., Lu J., *et al.* New Solid Solution MAX Phases: (Ti_{0.5},V_{0.5})₃AlC₂, (Nb_{0.5},V_{0.5})₂AlC, (Nb_{0.5},V_{0.5})₄AlC₃ and (Nb_{0.8},Zr_{0.2})₂AlC. *Mater Res Lett* 2, 233-240 (2014).

- 18. Schuster J. C., Nowotny H. INVESTIGATIONS OF THE TERNARY SYSTEMS (Zr, Hf, Nb, Ta)-Al-C AND STUDIES ON COMPLEX CARBIDES. Z Metallkd 71, 341-346 (1980).
- Mockute A., Dahlqvist M., Emmerlich J., Hultman L., Schneider J. M., Persson P. O. Å., *et al.* Synthesis and *ab initio* calculations of nanolaminated (Cr,Mn)₂AlC compounds. *Phys Rev B* 87, 094113 (2013).
- 20. Mockute A., Lu J., Moon E. J., Yan M., Anasori B., May S. J., *et al.* Solid solubility and magnetism upon Mn incorporation in the bulk ternary carbides Cr₂AlC and Cr₂GaC. *Mater Res Lett* **3**, 16-22 (2014).
- 21. Hamm C. M., Bocarsly J. D., Seward G., Kramm U. I., Birkel C. S. Non-conventional synthesis and magnetic properties of MAX phases (Cr/Mn)₂AlC and (Cr/Fe)₂AlC. *J Mater Chem C* **5**, 5700-5708 (2017).
- 22. Reiffenstein E., Nowotny H., Benesovsky F. Strukturchemische und magnetochemische Untersuchungen an Komplexcarbiden. *Monatsh Chem* **97**, 1428-1436 (1966).
- 23. Lapauw T., Tunca B., Potashnikov D., Pesach A., Ozeri O., Vleugels J., *et al.* The double solid solution (Zr, Nb)₂(Al, Sn)C MAX phase: a steric stability approach. *Sci Rep* **8**, 12801 (2018).
- 24. Halim J., Palisaitis J., Lu J., Thörnberg J., Moon E. J., Precner M., *et al.* Synthesis of Two-Dimensional Nb_{1.33}C (MXene) with Randomly Distributed Vacancies by Etching of the Quaternary Solid Solution (Nb_{2/3}Sc_{1/3})₂AlC MAX Phase. *ACS Applied Nano Materials* **1**, 2455-2460 (2018).
- 25. Pan R., Zhu J., Liu Y. Synthesis, microstructure and properties of $(Ti_{1-x},Mo_x)_2AlC$ phases. *Materials Science and Technology* **34**, 1064-1069 (2018).
- 26. Hamm C. M., Duerrschnabel M., Molina L., Salikhov R., Spoddig D., Farle M., *et al.* Structural, magnetic and electrical transport properties of non-conventionally prepared MAX phases V₂AlC and (V/Mn)₂AlC. *Materials Chemistry Frontiers* **2**, 483-490 (2017).
- 27. Lin S., Tong P., Wang B. S., Huang Y. N., Lu W. J., Shao D. F., *et al.* Magnetic and electrical/thermal transport properties of Mn-doped $M_{n+1}AX_n$ phase compounds $Cr_2 = {}_xMn_xGaC (0 \le x \le 1)$. *J Appl Phys* **113**, 053502 (2013).
- 28. Petruhins A., Ingason A. S., Lu J., Magnus F., Olafsson S., Rosen J. Synthesis and characterization of magnetic (Cr_{0.5}Mn_{0.5})₂GaC thin films. *J Mater Sci* **50**, 4495-4502 (2015).
- 29. Lai C.-C., Tao Q., Fashandi H., Wiedwald U., Salikhov R., Farle M., *et al.* Magnetic properties and structural characterization of layered (Cr_{0.5}Mn_{0.5})₂AuC synthesized by thermally induced substitutional reaction in (Cr_{0.5}Mn_{0.5})₂GaC. *APL Mater* **6**, 026104 (2018).
- 30. Meshkian R., Ingason A. S., Arnalds U. B., Magnus F., Lu J., Rosen J. A magnetic atomic laminate from thin film synthesis: (Mo_{0.5}Mn_{0.5})₂GaC. *APL Mater* **3**, 076102 (2015).
- 31. Gupta S., Hoffman E. N., Barsoum M. W. Synthesis and oxidation of Ti₂InC, Zr₂InC, (Ti_{0.5},Zr_{0.5})₂InC and (Ti_{0.5},Hf_{0.5})₂InC in air. *J Alloys Compd* **426**, 168-175 (2006).
- 32. Manoun B., Leaffer O. D., Gupta S., Hoffman E. N., Saxena S. K., Spanier J. E., *et al.* On the compression behavior of Ti_2InC , $(Ti_{0.5},Zr_{0.5})2InC$, and M_2SnC (M = Ti, Nb, Hf) to quasi-hydrostatic pressures up to 50 GPa. *Solid State Commun* **149**, 1978-1983 (2009).
- 33. Barsoum M. W., Golczewski J., Seifert H. J., Aldinger F. Fabrication and electrical and thermal properties of Ti₂InC, Hf₂InC and (Ti,Hf)₂InC. *J Alloys Compd* **340**, 173-179 (2002).

- 34. Kerdsongpanya S., Buchholt K., Tengstrand O., Lu J., Jensen J., Hultman L., *et al.* Phasestabilization and substrate effects on nucleation and growth of $(Ti,V)_{n+1}GeC_n$ thin films. *J Appl Phys* **110**, 053516 (2011).
- 35. Lin S., Huang Y., Zu L., Kan X., Lin J., Song W., *et al.* Alloying effects on structural, magnetic, and electrical/thermal transport properties in MAX-phase Cr_{2-x}M_xGeC (M =Ti, V, Mn, Fe, and Mo). *J Alloys Compd* **680**, 452-461 (2016).
- 36. Phatak N. A., Saxena S. K., Fei Y., Hu J. Synthesis of a new MAX compound (Cr_{0.5}V_{0.5})₂GeC and its compressive behavior up to 49 GPa. *J Alloys Compd* **475**, 629-634 (2009).
- 37. Scabarozi T. H., Benjamin S., Adamson B., Applegate J., Roche J., Pfeiffer E., *et al.* Combinatorial Investigation of the Stoichiometry, Electronic Transport and Elastic Properties of $(Cr_{1-x}V_x)_2$ GeC Thin Films. *Scripta Mater* **66**, 85-88 (2011).
- 38. Ingason A. S., Mockute A., Dahlqvist M., Magnus F., Olafsson S., Arnalds U. B., *et al.* Magnetic self-organized atomic laminate from first principles and thin film synthesis. *Phys Rev Lett* **110**, 195502 (2013).
- 39. Liu Z., Waki T., Tabata Y., Nakamura H. Mn-doping-induced itinerant-electron ferromagnetism in Cr₂GeC. *Phys Rev B* **89**, 054435 (2014).
- 40. Rivin O., Caspi E. N., Pesach A., Shaked H., Hoser A., Georgii R., *et al.* Evidence for ferromagnetic ordering in the MAX phase (Cr_{0.96}Mn_{0.04})₂GeC. *Mater Res Lett* **5**, 465-471 (2017).
- 41. Tao Q., Dahlqvist M., Lu J., Kota S., Meshkian R., Halim J., *et al.* Two-dimensional Mo_{1.33}C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. *Nat Commun* **8**, 14949 (2017).
- 42. Dahlqvist M., Lu J., Meshkian R., Tao Q., Hultman L., Rosen J. Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering. *Sci Adv* **3**, e1700642 (2017).
- 43. Lu J., Thore A., Meshkian R., Tao Q., Hultman L., Rosen J. Theoretical and experimental exploration of a novel in-plane chemically-ordered $(Cr_{2/3}M_{1/3})_2$ AlC i-MAX phase with M=Sc and Y. *Cryst Growth Des* **17**, 5704–5711 (2017).
- 44. Meshkian R., Dahlqvist M., Lu J., Wickman B., Halim J., Thörnberg J., *et al.* W-based atomic laminates and their 2D derivative W_{1.33}C MXene with vacancy ordering. *Adv Mater* **30**, 1706409 (2018).
- 45. Chen L., Dahlqvist M., Lapauw T., Tunca B., Wang F., Lu J., *et al.* Theoretical Prediction and Synthesis of (Cr_{2/3}Zr_{1/3})₂AlC *i*-MAX Phase. *Inorg Chem* **57**, 6237-6244 (2018).
- Thörnberg J., Halim J., Lu J., Meshkian R., Palisaitis J., Hultman L., *et al.* Synthesis of (V_{2/3}Sc_{1/3})₂AlC *i*-MAX phase and V_{2-x}C MXene scrolls. *Nanoscale* 11, 14720-14726 (2019).
- 47. Tao Q., Lu J., Dahlqvist M., Mockute A., Calder S., Petruhins A., *et al.* Atomically Layered and Ordered Rare-Earth i-MAX Phases: A New Class of Magnetic Quaternary Compounds. *Chem Mater* **31**, 2476-2485 (2019).
- 48. Dahlqvist M., Petruhins A., Lu J., Hultman L., Rosen J. Origin of Chemically Ordered Atomic Laminates (i-MAX): Expanding the Elemental Space by a Theoretical/Experimental Approach. *ACS Nano* **12**, 7761-7770 (2018).
- 49. Petruhins A., Dahlqvist M., Lu J., Hultman L., Rosen J. Theoretical prediction and experimental verification of the chemically-ordered atomic-laminate *i*-MAX phases (Cr_{2/3}Sc_{1/3})₂GaC and (Mn_{2/3}Sc_{1/3})₂GaC. *Cryst Growth Des* **20**, 55-61 (2020).

- 50. Petruhins A., Lu J., Hultman L., Rosen J. Synthesis of atomically layered and chemically ordered rare-earth (RE) *i*-MAX phases; (Mo_{2/3}RE_{1/3})₂GaC with RE = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. *Mater Res Lett* 7, 446-452 (2019).
- 51. Greenwood N. N., Earnshaw A. Chemistry of the Elements (Butterworth-Heinemann, 1997).
- 52. Huheey J. E., Keiter E. A., Keiter R. L. *Inorganic Chemistry : Principles of Structure and Reactivity* (HarperCollins, New York, USA, 1993).