Enhanced Surface Stabilization of Gold Nanoclusters through Diglyme Coordination

Ian D. Anderson, Yuchen Wang, Christine M. Aikens, Christopher J. Ackerson

Experimental Methods

Synthesis of $\mathrm{Au}_{25}(\mathrm{PET})_{18}$. A previously published method was adapted for the synthesis of $\mathrm{Au}_{25}(\mathrm{PET})_{18}$ TOA. ${ }^{1}$ In brief, $2.0 \mathrm{~g} \mathrm{HAuCl} 4 \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and 3.12 g tetra-n-octylammonium bromide were added to 140 mL tetrahydrofuran in a 300 mL roundbottom flask. The solution was stirred for 30 minutes until a dark orange color was observed. 3.6 mL of 2-phenylethanethiol was then added to the flask, and the resulting solution was stirred overnight. A separate solution containing 1.94 g sodium borohydride and $48 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ was produced in a 125 mL Erlenmeyer flask. This solution was cooled to $0^{\circ} \mathrm{C}$ prior to adding it to the goldcontaining solution. The combined solutions were then stirred for 48 hours, followed by separation and evaporation of the organic layer. The resulting brown oil was re-dissolved in several milliliters of dichloromethane and separated into four 50 mL conical vials. The conical vials were filled with methanol and placed in a centrifuge at 4000 RPM for 30 minutes. The supernatant was decanted and the precipitate was washed twice more by addition of methanol and centrifugation. The final product was extracted from the resulting powder using dichloromethane and dried in order to oxidize the cluster from its native -1 charge state to neutral.

Synthesis of $\left[\mathrm{Au}_{20}(\mathrm{PET})_{15}(\mathrm{DG})_{2}\right] \cdot 4[\mathrm{DG}]$. Synthetic conditions were adapted from a previously published report. ${ }^{2}$ In brief, 48 mL of THF was added to a 250 mL Erlenmeyer flask followed by $643 \mu \mathrm{~L}$ of 2-phenylethanethiol ($4.8 \mathrm{mmol}, 3 \mathrm{eq}$). 630 $\mathrm{mg} \mathrm{HAuCl} 4 \cdot 3 \mathrm{H}_{2} \mathrm{O}(1.6 \mathrm{mmol}, 1 \mathrm{eq})$ dissolved in 16 mL diglyme was added to the reaction vessel under constant magnetic stirring. Over the course of 3 hours the initial cloudy yellow solution transitioned to a completely opaque milky white. Approximately five minutes prior to the end of this 3 hour period, a suspension of 15.1 mg sodium borohydride ($0.4 \mathrm{mmol}, 0.25$ eq) in 4 mL diglyme was sonicated at room temperature. At the 3 hour mark this suspension was then added dropwise over the course of 1 minute, followed by 120 mL diglyme. During the sodium borohydride addition, the solution turned dark black but quickly transitioned to a deep orange following the addition of the gross excess of diglyme. The reaction was stirred for an additional hour, whereupon the solution was passed through a Büchner funnel with a medium frit to remove insoluble byproducts. Quenching was performed by transferring this filtered solution to a 1-L fleaker and adding methanol to 1 L . The precipitated nanocluster product was isolated as an orange solid by passing this quenched solution through a Büchner funnel with a fine frit and further rinsing with excess methanol. For solution-phase studies, this solid product was dried overnight and re-suspended in either dichloromethane or chloroform. Yield was calculated with reference to the precursor gold salt $\mathrm{HAuCl}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and the full cluster formula, including the 4 excess diglyme.

Hierarchical Assembly Test. In a typical experiment, a $20 \mathrm{mg} / \mathrm{mL}$ solution of nanocluster sample in 2 mL chloroform was stored in a $5-\mathrm{mL}$ scintillation vial and covered with a thin layer of parafilm to allow for the safe dispersal of any vapor. This vial was submerged halfway in a Büchi B-100 water bath set to the desired temperature ($30^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}$, or $60^{\circ} \mathrm{C}$) and held in place by a clamp for the duration of one hour. The vial was then removed and placed within an ice water bath in order to rapidly cool the solution prior to analysis by UV/Vis linear absorption spectroscopy. For each temperature, additional experiments were performed with an excess (2 mL) of diglyme added to the 2 mL nanocluster solutions, providing a total of eight experiments.

Figure S1: ${ }^{1} \mathrm{H}$ spectra of $\mathrm{Au}_{25}(\mathrm{PET})_{18}$ (top, blue) and $\left[\mathrm{Au}_{20}(\mathrm{PET})_{15}(\mathrm{DG})_{2}\right] \cdot 4[\mathrm{DG}]$ (bottom, red) in dichloromethane- d_{2}. The central position of the peaks corresponding to the ethylene linker protons of PET are indicated for both samples.

Figure S2: Differential thermal analysis (DTA) plot of the TGA data for $\left[\mathrm{Au}_{20}(\mathrm{PET})_{15}(\mathrm{DG})_{2}\right] \cdot 4[\mathrm{DG}]$, obtained by taking the difference of every adjacent pair of weight \% values and dividing by the time change. The raw DTA values were smoothed using a Savitzky-Golay filter with a window of $10^{\circ} \mathrm{C}$.

Figure S3: Linear absorption spectrum of $\left[\mathrm{Au}_{20}(\mathrm{PET})_{15}(\mathrm{DG})_{2}\right] \cdot 4[\mathrm{DG}]$ in chloroform. Inset shows a $10 \mathrm{mg} / \mathrm{mL}$ solution of the nanocluster, showcasing its gold-orange hue.

Figure S4: FT-IR spectrum of $\left[\mathrm{Au}_{20}(\mathrm{PET})_{15}(\mathrm{DG})_{2}\right] \cdot 4[\mathrm{DG}]$ in chloroform. Inset shows a zoomed-in view of the region (2000-1750 cm^{-1}) which corresponds to intercluster ligand interactions brought about by dimerization. These peaks are notably absent in $\left[\mathrm{Au}_{20}(\mathrm{PET})_{15}(\mathrm{DG})_{2}\right] \cdot 4[\mathrm{DG}]$, further affirming its lack of dimerization/polymerization. See reference 2 for further details.

Figure S5: Stacked linear absorption spectra of $\left[\mathrm{Au}_{20}(\mathrm{PET})_{15}(\mathrm{DG})_{2}\right] \cdot 4[\mathrm{DG}]$ when exposed to different temperatures without (left) and with (right) excess diglyme.

Figure S6: Full MALDI-MS spectrum of $\left.\mathrm{Au}_{20}(\mathrm{PET})_{15}(\mathrm{DG})_{2}\right] \cdot 4[\mathrm{DG}]$ collected in the positive ionization mode.

References

1) Parker, J. F.; Weaver, J. E. F.; McCallum, F.; Fields-Zinna, C.A.; Murray, R. W. Langmuir 2010, 26, 13650.
2) Compel, W. S.; Wong, O. A.; Chen, X.; Yi, C.; Geiss, R.; Häkkinen, H.; Knappenberger, K. L.; Ackerson, C. J. ACS Nano 2015, 9 (12), 11690-11698.

Computational Methods

NMR Calculations: Diglyme

Because the terminal methyl group of diglyme can rotate freely at room temperature, two structures for linear diglyme, labeled diglyme-GS and diglyme-TS (Figure S7), are considered. Diglyme-GS is the global minimum structure and diglyme-TS is a transition state related to rotation of the terminal methyl groups. Diglyme-GS is lower in energy than diglyme-TS by $18.9 \mathrm{~kJ} / \mathrm{mol}$.

diglyme-GS

diglyme-TS

Figure S7: Fully optimized BP86/TZP structures for diglyme-GS and diglyme-TS. These structures differ in the orientation of the terminal methyl groups. Hydrogen atoms are labeled 12, 13, 14, 15, 16, 17, and 18 respectively. Carbon = gray, oxygen = red, and hydrogen $=$ white .

From Table S1, it can be noted that averaging the chemical shifts for diglyme-GS and diglyme-TS leads to chemical shifts that are consistent with the experimental results in Figure 2, as would be expected due to free rotation of the methyl groups. Thus, the calculated results are consistent with a linear diglyme molecule in pure solution indergoing free methyl rotation. Hydrogen atoms in CH_{2} groups have chemical shifts at around $3.8 \sim 4.0 \mathrm{ppm}$, which are only about 0.4 ppm higher than those determined experimentally.

	hydrogen atom	chemical shifts (ppm)		hydrogen atom	chemical shifts (ppm)
	12	3.93		12	3.83
	13	3.93		13	3.83
	14	3.84		14	3.98
diglyme-GS	15	3.84	diglyme-TS	15	3.98
	16	3.56		16	3.97
	17	3.84		17	3.26
	18	3.56		18	3.97

Table S1: Calculated ${ }^{1} \mathrm{H}$ NMR chemical shifts for hydrogen atoms 12, 13, 14, 15, 16, 17, and 18 in diglyme-GS and diglymeTS.

Binding Energy Analysis

To examine the binding strength between $\mathrm{Au}_{20}\left(\mathrm{SCH}_{3}\right)_{15}{ }^{+}$and diglyme, we consider the binding of these fragments to form the full $\mathrm{Au}_{20}\left(\mathrm{SCH}_{3}\right)_{15} \mathrm{DG}^{+}$system. The optimized $\mathrm{Au}_{20}\left(\mathrm{SCH}_{3}\right)_{15} \mathrm{DG}^{+}$coordinates (below) are split into fragments that are considered without further optimization (i.e. frozen fragments). We also fully optimize the fragments and determine the binding energy to form $\mathrm{Au}_{20}\left(\mathrm{SCH}_{3}\right)_{15} \mathrm{DG}^{+}$. For diglyme, we consider the crown-like minimum similar to the arrangement on the nanoparticle (crown) and its global energy minimum (linear).

Optimization of diglyme changes the energy by less than $8 \mathrm{~kJ} / \mathrm{mol}$, whereas optimization of the $\mathrm{Au}_{20}\left(\mathrm{SCH}_{3}\right)_{15}{ }^{+}$fragment leads to an energy stabilization of $52.5 \mathrm{~kJ} / \mathrm{mol}$; indicating that the binding of diglyme has resulted in a significant geometrical rearrangement of the Au_{20} cluster compared to the structure without diglyme (Table S2).

		Frozen fragments	Optimized fragments	
Relative energies	$\mathrm{Au}_{20}\left(\mathrm{SCH}_{3}\right)_{15}{ }^{+}$	52.5		
$(\mathbf{k J} / \mathbf{m o l})$	DG	7.9	2.6 (Crown)	0 (Linear)
Binding energies (kJ/mol)	-204.7	-146.7	-141.8	

Table S2: Relative energies of $\mathrm{Au}_{20}\left(\mathrm{SCH}_{3}\right)_{15^{+}}$and diglyme fragments before and after fragment optimization, followed by binding energies of fragments to form $\mathrm{Au}_{20}\left(\mathrm{SCH}_{3}\right)_{15} \mathrm{DG}^{+}$.

Optimized BP86/TZP coordinates for $\mathrm{Au}_{20}\left(\mathrm{SCH}_{3}\right){ }_{15} \mathrm{DG}^{+}$:

Au	14.241138	11.425786	-0.092579
Au	14.660912	12.251971	3.376269
Au	16.246342	13.555258	0.224274
Au	15.895334	14.373573	-2.511098
Au	14.739907	15.898072	-0.469852
Au	15.684812	18.447517	2.438385
Au	13.357622	16.638112	1.762807
Au	14.164861	18.700721	-0.380090
Au	13.615731	21.571629	-0.053126
Au	12.310963	19.366933	2.574677
Au	14.470293	15.888862	4.558413
Au	15.939093	15.543087	2.062360
Au	13.904047	12.796653	-3.800841
Au	11.244799	14.259763	-0.652962
Au	13.762272	13.931420	1.325519
Au	12.692210	18.303376	-3.258133

$\begin{array}{llll}\mathrm{Au} & 15.473678 & 16.989291 & -2.913062\end{array}$
$\begin{array}{llll}\mathrm{Au} & 15.343591 & 20.093681 & -2.990275\end{array}$
$\begin{array}{llll}\mathrm{Au} & 14.013887 & 16.035165 & -5.496651\end{array}$
$\begin{array}{llll}\mathrm{Au} & 13.240172 & 15.444077 & -2.718252\end{array}$
$\begin{array}{lllll}\text { S } & 14.836927 & 18.212715 & 4.606876\end{array}$

S $\quad 12.967591 \quad 21.574103 \quad 2.197114$
$\begin{array}{llll}\text { S } & 16.460128 & 18.828150 & 0.257394\end{array}$
$\begin{array}{llll}\text { S } & 14.003806 & 13.657116 & 5.127302\end{array}$
$\begin{array}{llll}\text { S } & 15.421705 & 10.675476 & 1.811379\end{array}$

S $\quad 17.574291 \quad 12.867902-1.671712$

S $\quad 11.443013 \quad 17.236763 \quad 3.065730$

H $\quad 12.061195 \quad 10.023818$-3.471969
$\begin{array}{lllll}\text { S } & 13.423990 & 18.320889 & -5.490587\end{array}$
$\begin{array}{llll}\text { S } & 14.184406 & 22.003524 & -2.280891\end{array}$

S $\quad 11.940617 \quad 18.161298 \quad-1.034916$
$\begin{array}{lllll}\text { S } & 14.506864 & 13.761899 & -5.858877\end{array}$

S $\quad 12.877038 \quad 11.727478$-1.975290

S $\quad 11.38482413 .7002051 .607318$

S $\quad 16.844719 \quad 18.587566 \quad-4.019838$

S $\quad 10.976345 \quad 14.635804$-2.950240
$\begin{array}{llll}C & 16.905591 & 20.608422 & 0.178889\end{array}$

C $\quad 12.165436 \quad 13.646304 \quad 5.097635$
$\begin{array}{llll}\text { H } & 13.665115 & 9.550168 & -2.820550\end{array}$

C $\quad 14.551742 \quad 21.750383 \quad 3.119739$
$\begin{array}{llll}C & 16.288108 & 18.391074 & 5.728489\end{array}$

C $\quad 10.032291 \quad 17.017252 \quad 1.896996$

C $\quad 17.065053 \quad 11.160699$-2.120637
$\begin{array}{llll}C & 14.473206 & 9.152202 & 2.261237\end{array}$
$\begin{array}{llll}C & 10.907944 & 19.635217 & -0.683916\end{array}$

C $\quad 16.35030913 .741769 \quad-5.919050$

C $\quad 9.864873 \quad 16.093659 \quad-3.088176$

C $\quad 12.590019 \quad 21.883828$-3.194399

C $\quad 11.868748 \quad 18.334854-6.484288$

C $\quad 18.35364418 .662357-2.961307$

C $\quad 11.09584911 .883998 \quad 1.669764$

C $\quad 12.693732 \quad 9.989524 \quad-2.578533$
$\begin{array}{llll}H & 17.848340 & 20.746363 & 0.720082\end{array}$
$\begin{array}{llll}H & 16.114603 & 21.236689 & 0.605082\end{array}$
$\begin{array}{llll}H & 17.030428 & 20.859166 & -0.883251\end{array}$
$\begin{array}{llll}H & 11.822147 & 14.316358 & 5.893012\end{array}$
$\begin{array}{llll}\text { H } & 11.834541 & 12.622313 & 5.301230\end{array}$
$\begin{array}{llll}H & 11.797328 & 13.988813 & 4.124641\end{array}$
$\begin{array}{llll}\text { H } & 12.196949 & 9.410558 & -1.792491\end{array}$
$\begin{array}{llll}H & 11.643352 & 11.387576 & 0.860694\end{array}$
$\begin{array}{llll}\text { H } & 10.020634 & 11.696309 & 1.578223\end{array}$
$\begin{array}{llll}H & 14.318957 & 21.661802 & 4.186365\end{array}$
$\begin{array}{llll}H & 14.961960 & 22.741840 & 2.900553\end{array}$
$\begin{array}{llll}H & 15.257908 & 20.959839 & 2.832803\end{array}$
$\begin{array}{llll}H & 15.949671 & 18.157163 & 6.743717\end{array}$
$\begin{array}{llll}\text { H } & 16.622164 & 19.433062 & 5.674753\end{array}$

H $17.08057317 .707985 \quad 5.411795$

H $\quad 9.66489215 .995319 \quad 2.035944$
$\begin{array}{llll}\text { H } & 10.366704 & 17.143878 & 0.862953\end{array}$
$\begin{array}{llll}\text { H } & 9.254587 & 17.744277 & 2.152649\end{array}$

H $\quad 15.975595 \quad 11.058294$-2.048762

H $\quad 17.55421210 .463863-1.431420$
$\begin{array}{llll}\text { H } & 17.395015 & 10.975475 & -3.148867\end{array}$
$\begin{array}{llll}H & 14.858931 & 8.798646 & 3.223491\end{array}$
$\begin{array}{llll}H & 14.657315 & 8.403636 & 1.483764\end{array}$
$\begin{array}{llll}H & 13.404792 & 9.367760 & 2.338463\end{array}$
$\begin{array}{llll}\text { H } & 10.730543 & 19.650137 & 0.400927\end{array}$

H $\quad 9.96305419 .525015$-1.227671

H $11.42092920 .559184 \quad-0.973534$

H $\quad 16.76923514 .227523-5.030354$

H $\quad 16.650969 \quad 14.278155$-6.825171
$\begin{array}{llll}H & 16.670929 & 12.696095 & -5.972078\end{array}$
$\begin{array}{llll}H & 10.082326 & 16.816798 & -2.298277\end{array}$
$\begin{array}{llll}\text { H } & 8.833129 & 15.733954 & -3.007158\end{array}$
$\begin{array}{llll}H & 10.031916 & 16.554702 & -4.068272\end{array}$

H $\quad 12.164812 \quad 20.875920$-3.094189

H $12.811090 \quad 22.081876$-4.248762

H $\quad 11.909339 \quad 22.645408$-2.799685
$\begin{array}{llll}\text { H } & 11.190975 & 17.540997 & -6.161467\end{array}$
$\begin{array}{llll}H & 12.149517 & 18.187700 & -7.532724\end{array}$

H $\quad 11.39877919 .315596$-6.354579
$\begin{array}{llll}\text { H } & 18.085761 & 18.584182 & -1.903406\end{array}$

H $\quad 18.86793219 .608311$-3.162983

H 18.99235717 .819468 -3.248070

H $\quad 11.46835611 .530702 \quad 2.638978$
$\begin{array}{llll}O & 18.001130 & 16.277071 & 3.935011\end{array}$

C $\quad 18.66134215 .217199 \quad 4.645754$

C $\quad 18.910697 \quad 17.160381 \quad 3.258313$

C $\quad 19.411011 \quad 16.5925431 .943657$

C $\quad 17.690795 \quad 14.061428 \quad 4.777501$
$\begin{array}{llll}\text { O } & 18.290821 & 16.433157 & 1.078172\end{array}$
$\begin{array}{llll}0 & 17.279126 & 13.544396 & 3.506028\end{array}$
$\begin{array}{lllll}C & 18.666845 & 16.062500 & -0.253199\end{array}$

C $\quad 18.293845 \quad 12.768751 \quad 2.851218$

H $\quad 18.961022 \quad 15.568003 \quad 5.649615$

H $19.57205314 .902429 \quad 4.112599$
$\begin{array}{llll}H & 18.325427 & 18.070452 & 3.055280\end{array}$
$\begin{array}{llll}H & 19.761440 & 17.417687 & 3.910886\end{array}$

H $19.93243915 .626008 \quad 2.083290$
$\begin{array}{llll}\text { H } & 20.137048 & 17.300525 & 1.502137\end{array}$
$\begin{array}{llll}H & 18.137703 & 13.262923 & 5.394090\end{array}$
$\begin{array}{llll}\text { H } & 19.110794 & 15.053924 & -0.278686\end{array}$
$\begin{array}{llll}\text { H } & 19.383981 & 16.790841 & -0.664840\end{array}$
$\begin{array}{llll}\text { H } & 17.749844 & 16.072652 & -0.853987\end{array}$
$\begin{array}{llll}H & 18.610938 & 11.929666 & 3.490601\end{array}$
$\begin{array}{llll}\text { H } & 17.836576 & 12.382620 & 1.930680\end{array}$
$\begin{array}{llll}H & 19.167221 & 13.379677 & 2.576638\end{array}$

H
$16.768288 \quad 14.411084 \quad 5.262760$

