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Section S1. Surface characterization

S1.1. Cross-sectional view of fabricated nanowires 
Fig. S1 shows cross-sectional morphological details of the segmented nanowires (NW) taken from 
a scanning electron microscope (SEM). To create NWs with dual wettability, two metals (Ni and 
Cu) are selected based on thermal conductivity, intrinsic contact angle, availability for 
electrochemical deposition, and corrosion resistance. As Ni resists corrosion, the Cu portion is 
selectively oxidized and decorated by CuO nanofeatures that provide enormous surface roughness 
and hydrophilicity, while the Ni portion remains intactly hydrophobic. The ratio of the Cu and Ni 
portion lengths ( , ) and average diameter are investigated by measuring and averaging the 𝑙𝐶𝑢 𝑙𝑁𝑖

nanowire height and diameter in Fig. S1. 

Fig. S1. Cross-sectional SEM images of the nanowires.



S1.2. Nanowire array porosity
To quantify the porosity distribution of the fabricated samples, we calculate the effective porosity 
of the NW by accounting for the effects of the stepwise diameter increase in the Cu segment after 
oxidation. The effective porosity is defined as the void fraction of the system , where  is 𝜙 = 1 ‒  

the NW solid fraction. The solid fraction, in turn, is calculated as , where  is the NW  = 𝜋𝑑2𝑁/4 𝑁
areal number density.1 The number density of nanowires is =0.23 μm-2 obtained from the top-𝑁
view SEM images for all the nanowires in this study. Top-view SEM image comparison of the 
CuO NWs (Fig. 2i) and Ni NWs (Fig. 2j) confirm that the chemical oxidation has no noticeable 
effects on the NW’s natural tortuosity. Therefore, the overall porosity of segmented nanowires is 
impacted by the ratio of the segmented Cu and Ni portions, owing to the difference in diameter 
between the two metal segments. Considering all these factors, the porosity of the segmented 
nanowire after oxidation can be calculated as follows:

𝜙 = 1 ‒
𝜋𝑁

4𝑙𝑡𝑜𝑡
(𝑑 2

𝑁𝑖𝑙𝑁𝑖 + 𝑑 2
𝐶𝑢𝑂𝑙𝐶𝑢𝑂)                                                  (𝑆1) 

The calculation results are listed in the Table 1. We report an insignificant (<10%) porosity 
discrepancy across all NW samples used for this study. Note that the areal loss from the 
entanglement of the nanowires is evaluated as 0.2% from our previous study and is factored into 
our porosity evaluation in this study.1 



S1.3. Surface chemistry and wetting behavior 
The NW’s surface chemistry changes due to the selective oxidation of the Cu material. To directly 
compare the coupled effects of NW structures and oxidation, we first prepare plain Ni and Cu 
surfaces using identical substrates as shown in Fig. S2a. After oxidation, the contact angle remains 
relatively stable ( < 8%) for the Ni surface while noticeably dropping by  for the Cu ∆𝜃 ∆𝜃 = 37%
surface (Fig. S2b). The oxidation-induced contact angle drop becomes more prominent when 
coupled with NW geometry. By comparing Fig. S2 and Fig. S3, it becomes evident that the contact 
angles of the NW surfaces before oxidation are generally higher than the plain element surfaces 
owing to the additional roughness introduced by the NW arrays. 

Fig. S2. Surface characterization of flat surfaces with replicated nanotextures. (a) Sample 
preparation of metal surfaces coated on both bottom and top of the silicon wafer. The plain and 
structured metal surfaces are fabricated on an Au layer using an electrodeposition method. A Cu 
layer is coated coated via E-beam evaporation on the backside of the sample to provide a metallic 
surface required for the soldering process. (b) Contact angle results of the plain metal surface 
before and after oxidation.

Fig. S3. Contact angle measurements of NW samples before and after oxidation.



Fig. S4. Droplet imbibition and spreading during contact angle measurement of nanowires 
after oxidation.



S1.4. Capillary rise theory 
The capillary pressure through the porous media is expressed with the Laplace-Young equation:

∆𝑃𝑐𝑎𝑝 =
2𝜎cos 𝜃𝑠

𝑅𝑝

(S2)

where  is the surface tension of the liquid, and  is the pore radius. The capillary pressure   𝜎 𝑅𝑝 ∆𝑃𝑐𝑎𝑝

is equivalent to the summation of the viscous friction, gravity, and evaporation during the wicking 
process: 

2𝜎𝑐𝑜𝑠𝜃𝑠

𝑅𝑝
=

𝜙
𝐾

𝜇ℎ𝑣 +
�̇�𝑒𝑣𝑝𝜇

2𝑑𝑓𝑖𝑙𝑚𝜌𝐾
ℎ2 + 𝜌𝑔ℎ

(S3)

where K is permeability,  is the liquid viscosity,  is film thickness, and  is the density of the 𝜇 𝑑𝑓𝑖𝑙𝑚 𝜌

liquid. As we perform the wicking test in the saturated chamber,  is negligible. In addition, the �̇�𝑒𝑣𝑝

gravitational term becomes negligible in low wicking height (< 10 mm) condition. Eq. (S2) can 
then be reduced to the Lucas-Washburn equation:1

ℎ2 =
4𝜎
𝜙𝜇

𝐾
𝑅𝑒𝑓𝑓

𝑡 (S4)



S1.5. Uncertainty analysis for liquid rate-of-rise test 
Capillary performance parameter. As  is a function of the porosity, fluid viscosity, surface 𝐾/𝑅𝑒𝑓𝑓

tension, wicking height, and measurement time (Eq. S4), The uncertainty of the is:𝐾/𝑅𝑒𝑓𝑓

Because the fluid properties change with the lab ambient temperature 298 ± 2 K, the uncertainty in 
the surface tension and viscosity is 0.6% and 4.4%, respectively. Furthermore, the framerate of the 
high-speed camera used to capture the wicking is 60 fps, resulting in an uncertainty of 
approximately (< 0.015%). Therefore, we consider that uncertainty caused by liquid 8.4 𝑚𝑠 
properties and timeframe is negligible. Consequentially, the measurement error of the wicking 
height  causes the most overall uncertainty and is thus used for the calculation of the error of ∆ℎ

.1𝐾/𝑅𝑒𝑓𝑓

∆𝐾/𝑅𝑒𝑓𝑓

𝐾/𝑅𝑒𝑓𝑓
= (∆𝜎

𝜎 )2 + (∆𝜙
𝜙 )2 + (∆𝜇

𝜇 )2 + (2
∆ℎ
ℎ )2 + (∆𝑡

𝑡 )2 (S5)



Fig. S5. Schematic illustration of experimental setup for liquid rate-of-rise test. The setup is 
composed of a liquid chamber, water injection system, sample stage, and CCD camera. The water 
is injected gradually to control water height to initiate capillary rise. The test is performed in a 
saturation chamber to prevent evaporation during the liquid rise.

Fig. S6. Liquid rise on Ni NWs at 10 s. Capillary wicking is not observed on the Ni NWs due 
to the hydrophobic property. The meniscus that is formed partially on the edge of the sample 
might be due to the exposure of the hydrophilic Au bottom layer.  



Fig. S7. Liquid pathways through segmented Ni/CuO nanowire arrays. Liquid travels in the path 
of least hydraulic resistance. Structure-dominant liquid pathways form in regions where NW arrays 
are clustered due to the reduction of effective wicking distances. When NWs are spaced far apart, 
the liquid primarily wicks through the hydrophilic CuO base layer. Therefore, at low CuO content, 
the wicking is promoted through the efficient wicking pathways through the base layer. The 
capillary performance reduces with increasing CuO content as structure-dominant pathways start 
governing the overall liquid delivery. 



Section S2. Pool boiling experimental setup

S2.1. Uncertainty and repeatability analysis for pool boiling experiment
The uncertainties for pool boiling experiments are computed by using the law of propagation of 
uncertainty. The heat flux  is a function of temperature gradients, material properties, 𝑞” =  𝑘Δ𝑇/𝐿
and thermocouple positions.  is calculated by averaging the measured  values obtained from 𝑞” 𝑞”
thermocouples 1 – 4 as shown:

𝑞" = 𝑘[(𝑇1 ‒ 𝑇2

𝐿1
) + (𝑇2 ‒ 𝑇3

𝐿2
) + (𝑇3 ‒ 𝑇4

𝐿3
)

3 ]                                           (𝑆6)

where  are the temperature readings from the four thermocouples used in the experiment, 𝑇𝑖 = 1,2,3,4

k is the thermal conductivity, and  are the distance between thermocouples (Table S1).𝐿𝑖 = 1,2,3

By assuming that the thermal conductivity remains constant during experiments and that positional 
errors are minimized, the uncertainties become dictated by thermocouple readings  (  = ±0.11oC). 𝑈𝑇

As a result, the uncertainty of the heat flux becomes:

𝑈𝑞"

𝑞"
= ( 𝑈𝑇

∆𝑇1 ‒ 2
)2 + ( 𝑈𝑇

∆𝑇2 ‒ 3
)2 + ( 𝑈𝑇

∆𝑇3 ‒ 4
)2                                     (𝑆7)

By solving for Eqn. (S8), an uncertainty of approximately 3% is calculated for the maximum heat 
flux. Therefore, error bars are not shown in Fig.5 and Fig. S9  for clarity. 

The repeatability of the pool boiling behavior as well as the sample mounting procedure is tested 
by conducting an individual experiment on the unmodified bare Si surface. The acquired pool 
boiling and HTC curves for the tests (Fig. S9) show good repeatability. 

Table S1. Film characteristics for pool boiling calculation

Symbol Definition Unit
𝑞” Heat flux W/m2

T1 – T4 Temperature readings from thermocouples 1 – 4 oC
L1 – L4 Distance between thermocouples mm

Material Subscript Notation Thickness (nm) Thermal Conductivity k (W/mK)
Titanium Ti/Au 5 16

Gold Au 50 314
Copper Cu 1000 398
Silicon Si 300000 130

Material Subscript Notation Thickness (nm) Thermal Resistance R (m2K/W)
Silver Paste Sp 7.1 × 106 8.71 × 10 ‒ 6



Fig. S8. Schematic of pool boiling experimental setup. (a) The pool boiling setup consists of a clear 
boiling chamber, PTFE fixture, a guard heater, and thermocouple-embedded copper heating block. 
(b) The samples are soldered onto the boiling surface as shown. The heat flux is estimated by 
averaging the measurements obtained from four embedded thermocouples with illustrated 
spacings. The copper heating block is surrounded with a glass wool insulator to minimize heat loss 
and promote one-dimensional heat transfer. 

Fig. S9. Independent pool boiling tests on unmodified Si surfaces. (a) Pool boiling heat flux q” as 
a function of wall superheat (Ts – Tsat), and (b) HTC as a function of q”. Dotted lines show margin 
of errors from curve fitted data of the combined experiments. Error bars are not shown for clarity.



Section S3. Bubble dynamics analysis using deep learning

S3.1. Intelligent vision-based framework

Our developed framework consists of an object detection, object tracking, and data processing 
module to extract physical descriptors from experimentally acquired pool boiling image datsets. 1) 
Object detection module: As illustrated in Fig. S9a, high-resolution droplet images first pass 
through a custom-trained object detection module (Mask R-CNN) where droplet masks assigned 
with unique IDs are generated. At this stage, the model records primitive spatial features (e.g., 
equivalent diameter, pixel-wise area, eccentricity, orientation, solidity, and location). 2) Object 
tracking module: The detected masks then pass through a tracking module (TrackPy) where the 
IDed spatial features are used as parameters for tracking via the k-dimensional (k-d) tree algorithm. 
During the bubble tracking process, potential errors are manually identified and corrected using a 
documented graphical user interface (GUI). The model accuracy from the object detection/tracking 
is validated by testing evaluation metrics such as recall, precision, accuracy, F1-score, mean 
average pixel error (MAPE), and occlusion-induced errors, see Section S3.2 for details. 3) Data 
processing module: The datasets are finally post-processed to extract higher-level features (e.g., 
departure bubble diameter , departure frequency , and effective nucleation site density ) and 𝐷𝑏 𝑓𝑏 𝑁𝑏

visualized via Matlab.

S3.2. Model evaluation

To validate our model prediction performance, we develop a MATLAB script that checks if the 
predicted dataset pixels correspond with the labeled data (i.e., ground truth (GT)). A positive 
condition is when a model detects an instance that matches the GT and is counted as a true positive 
(TP). By contrast, a false positive (FP) instance is counted when the model predicts an nonexisting 
object. Simlarily, true negative (TN) situates when the model correctly predicts no existing 
instances, and false negative (FN) counts instances when an existing object is undetected. These 
conditions are summed across the dataset and used to determine the standard performance metrics 
of an object detection model:2, 3

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 +  𝐹𝑃
                                              (𝑆8)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                            (𝑆9)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                      (𝑆10)

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

                                      (𝑆11)

For a more comprehensive analysis, we determine the positive and negative conditions on a pixel-
based level (Fig. S10c). When using conventional methods based on IoU thresholds, the model 
retains its performance >90% until very tight IoU thresholds >0.9 are used (Fig. S11). Furthermore, 
we define a new performance metrics called the mean average percentage error (MAPE) for more 



detailed evaluations of the model prediction accuracies at the pixel-level. For this, a pixel-wise 
error (PE) is calculated by subtracting the ground truth binary mask from the predicted binary mask 
(PBM), then dividing by the ground truth. This results in the true negatives being removed from 
the binary matrix, leaving only true positive, false positive, and false negative pixels. MAPE is 
then calculated as:

𝑀𝐴𝑃𝐸 =
1
𝑛

𝑛

∑
𝑖 = 1

|𝑃𝐸| × 100 =  
1
𝑛

𝑛

∑
𝑖 = 1

|(𝐺𝑇 ‒ 𝑃𝐵𝑀)
𝐺𝑇 | × 100             (𝑆12)

Our framework displays striking performance (>90%) on all metrics (Fig. S9b). To characterize 
occlusion-induced errors, we manually compare a dataset consisting of >200  random labelled 
images with model predictions and solely estimate occlusion-induced errors of surface bubbles by 
assuming spherical morphologies. We report a maximum ocllusion-induced error of 4.6%. 

Fig. S10. Computer vision framework and model performance evaluation. (a) The object 
detection module uses high-speed, high-resolution images as an input dataset. Next, the images 
are passed through an object detection module (Mask R-CNN) where bubbles are automatically 
detected and labelled with pixel-wise masks. The masks are then linked together with respect 
to time through k-dimensional tree algorithms in the tracking module. Finally, the tracked 
results are post-processed in the data analysis module for visualization. (b) Mask R-CNN model 
learning curves show an exponential decaying trend. (c) The model performs exceptionally well 
on all traditional object detection evaluation metrics.



S3.3. Mechanistic pool boiling models and detection algorithms
The boiling heat flux released from the surface  is partitioned by the three principle components, 𝑞 "

𝑡𝑜𝑡

namely, natural convection  outside of the bubble-influenced domain (i.e., area of influence 𝑞 "
𝑛𝑐

), transient conduction  over the area of influence, and evaporative heat transfer  during 𝐴𝑖𝑛𝑓 𝑞 "
𝑓𝑐 𝑞 "

𝑒𝑣

phase change as follows:4-12

𝑞 "
𝑡𝑜𝑡 = 𝑞 "

𝑛𝑐 + 𝑞 "
𝑓𝑐 + 𝑞 "

𝑒𝑣                                                                (𝑆13)

𝑞 "
𝑛𝑐 = (1 ‒ 𝑁𝑏

𝜋𝐷2
𝑏

4 )ℎ𝑐Δ𝑇                                                           (𝑆14)

𝑞 "
𝑓𝑐 =

1
2[𝐷2

𝑏𝑁𝑏( 𝜋𝑘𝜌𝑐𝑓𝑏)]∆𝑇                                                       (𝑆15)

𝑞 "
𝑒𝑣 = 𝑁𝑏𝑓𝑏(𝜋

6
𝐷3

𝑏)𝜌𝑣ℎ𝑓𝑔                                                             (𝑆16)

where  is the effective nucleation site density,  is the departure diameter,  is the average 𝑁𝑏 𝐷𝑏 ℎ𝑐

convective heat transfer coefficient (HTC) outside of the ,  is the superheat, and  is the 𝐴𝑖𝑛𝑓 Δ𝑇 𝜌

density of the liquid,  is the heat capacity,  is the departure frequency and  is the latent heat 𝑐 𝑓𝑏 ℎ𝑓𝑔

of evaporation. We note that  remains experimentally undefined because the convective heat ℎ𝑐

transfer varies depending on the surrounding bubble nucleation and departure behaviors. Therefore, 
we suspect that  will be a function of the experimentally measured HTC and assume , ℎ𝑐 ℎ𝑐 ≈ 0.5ℎ𝑒𝑥𝑝

where  is the experimentally measured HTC.ℎ𝑒𝑥𝑝

Fig. S11. Model performance as a function of intersection over union (IoU) threshold. 



In order to characterize the key boiling parameters, we develop custom algorithms to process 
spatiotemporal features with respect to the boiling surface. Bubble departure (BD) events are 
detected by comparing the bottom bounding box’s relative position to the surface: 

, where  is the bottom bounding box coordinate 𝐵𝐷 =  𝐼𝐹(𝑏𝑏𝑜𝑥𝑏𝑜𝑡,1 < 𝑦) 𝐴𝑁𝐷 𝐼𝐹(𝑏𝑏𝑜𝑥𝑏𝑜𝑡,2 > 𝑦) 𝑏𝑏𝑜𝑥𝑏𝑜𝑡,𝑡

at time  and  is the pixel value corresponding to the boiling surface. The departure frequency 𝑡 𝑦

 is measured as a function of the bubble growth time , which characterizes the time 𝑓𝑏 = 1/𝑡𝑔 𝑡𝑔

between bubble nucleation and departure. While classical theories include an additional time 
period, namely the waiting time , which characterizes the time between bubble nucleation and 𝑡𝑤

departure, optical measurements confirm that  even at ONB.  Please see Movie S2 for semi 𝑡𝑤 ≈ 0

real-time mask predictions for all surfaces, where bubbles form immediately after departure. 

Lastly, the effective nucelation site density is estimated as , where  is the number 
𝑁𝑏 = (1

𝑍

𝑍

∑
𝑗 = 1

𝑥𝑗 )/𝐴𝑠
𝑥

of bubbles on the surface at time ,  is the total number of timesteps, and  is the projected boiling 𝑗 𝑍 𝐴𝑠

surface area. To test our model’s prediction validity, we compare the total theoretical heat flux  𝑞 "
𝑡ℎ

calculated from heat partitioning analysis Eq. S13-16 with experimental heat flux  values (Table 𝑞 "
𝑒𝑥𝑝

S2), showing reasonable mean error of ~13%. 

Table S2. Summary of extracted bubble parameters and heat flux values near the ONB.
Surface Type 𝐷𝑏 (𝑚𝑚) 𝑁𝑏 (1/𝑐𝑚2) 𝑓𝑏 (𝐻𝑧) 𝑞 "

𝑒𝑥𝑝 (𝑊/𝑐𝑚2) 𝑞 "
𝑡ℎ (𝑊/𝑐𝑚2)

Si Plain 5.64 2.1 13.45 10.32 11.23

CuO NWs 1.18 4.48 116.79 5.9 4.32

Ni/CuO NWs 0.77 4.79 275.45 3.75 3.74

Ni NWs 1.95 5.84 55 12.11 8.41

CuO/Ni NWs 2.12 5 37.95 4.87 4.93



S3.4. The low heat flux region 𝑞
”

𝑙𝑜𝑤

The low heat flux region is defined as a pool boiling range that the bubble dynamics at ONB could 
represent. Although the range defined in the current study  < 20 W/cm2 is based on observation 𝑞"
of bubble morphologies during pool boiling experiments, the definition remains unclear. However, 
because the boiling curve is relatively linear after ONB, we show in Table S3 and Table S4 that 
the conclusions mentioned in this work does not change for heat fluxes up to 30 W/cm2, where we 
can safely assume that bubble characteristics differ from ONB.

Table S3. Boiling heat transfer performances when .𝑞 ”
𝑙𝑜𝑤 < 15 𝑊/𝑐𝑚2

Surface Type 𝑙𝑐𝑢/𝑙𝑡𝑜𝑡
ℎ̅

)(𝑊/𝑐𝑚2𝐾

ℎ̅𝑙𝑜𝑤 

(𝑊/𝑐𝑚2𝐾)

𝐶𝐻𝐹 

(𝑊/𝑐𝑚2)
𝜒 𝜓

Si Plain N/A 1.09 0.72 32.1 1 1

CuO NWs 1 3.47 0.96 128.08 1.32 3.9

Ni/CuO NWs 0.44 3 1.20 122.93 1.66 3.82

Ni NWs 0 1.73 1.70 79.25 2.34 2.46

CuO/Ni NWs 0.47 2.39 0.84 105.93 1.15 3.3

Table S4. Boiling heat transfer performances when .𝑞 ”
𝑙𝑜𝑤 < 30 𝑊/𝑐𝑚2

Surface Type 𝑙𝑐𝑢/𝑙𝑡𝑜𝑡
ℎ̅

)(𝑊/𝑐𝑚2𝐾

ℎ̅𝑙𝑜𝑤 

(𝑊/𝑐𝑚2𝐾)

𝐶𝐻𝐹 

(𝑊/𝑐𝑚2)
𝜒 𝜓

Si Plain N/A 1.09 0.76 32.1 1 1

CuO NWs 1 3.47 1.45 128.08 1.91 3.9

Ni/CuO NWs 0.44 3 1.54 122.93 2.02 3.82

Ni NWs 0 1.73 1.71 79.25 2.24 2.46

CuO/Ni NWs 0.47 2.39 1.33 105.93 1.75 3.3
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