
Supporting Information 1

Machine Learning-based Prediction and Inverse Design of 2D 2
Metamaterial Structures with Tunable Deformation-Dependent 3
Poisson’s 4
 5
Jie Tian1, Keke Tang1*, Xianyan Chen2, and Xianqiao Wang3* 6

 7
1School of Aerospace Engineering and Applied Mechanics, Tongji University, 8
Shanghai 200092, China 9

2Department of Statistics, University of Georgia, Athens, GA 30602, USA 10

3School of ECAM, University of Georgia, Athens, GA 30602, USA 11

 12

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2022

1． Molecular Dynamic Simulation 1

All the CG molecular dynamics simulations are performed in the commercial molecular 2

dynamics package LAMMPS. In order to systemically and statistically calibrate the in-3

plane mechanical response of the CG models, the simulation box with 5 × 5 unit is 4

400	nm × 400	nm in dimension, and periodic boundary conditions in the 𝑥 − 𝑦 5

plane are imposed. The system is first energy minimized and then equilibrated in the 6

NVT ensemble at a temperature of 1 K for 5,000 timesteps. After the equilibration, the 7

sample is then compressed uniaxially along the 𝑥-direction using a strain-controlled 8

loading method, in which the deformation is added every 10 timesteps by deforming 9

the simulation box, and the equivalent strain rate is around 0.00002. The visualization 10

and post-processing of simulation results are carried out via the OVITO and Python 11

packages. 12

2. Machine Learning Algorithms 13

2.1 Data analysis 14

We employ both multidimensional scaling (MDS) and t-distributed stochastic neighbor 15

embedding (T-SNE) to interpret the distribution of data in our database, in which both 16

methods visualize high-dimensional data by giving each datapoint in a location in a 17

two-dimensional map. Figure S1 shows the results of space visualization of our dataset. 18

In both plots, there is no obvious data cluster observed, indicating that our dataset for 19

porosity 50%, 60%, and 70% are well-distributed in the design space and suitable for a 20

single machine learning algorithm. 21

 22

 1

Figure S1: MDS and T-SNE methods are employed to analyze the distribution of data. Both plots show 2
that no obvious data cluster is observed, indicating that our datasets for porosity 50%, 60%, and 70% are 3
well-distributed in the design space and suitable for a single machine learning algorithm. (a) MDS plot; 4
(b) T-SNE plot. 5
 6

2.2 CNN training 7

Mean squared error (MSE) loss is helpful when calculating the gradient, and Infinity 8

Norm 	𝐿! loss is accurate for evaluating the distances between the predicted and 9

ground-truth values applied in both training and test datasets 10

𝑀𝑆𝐸 =0
(𝑦"# − 𝑦$#)%

𝑛

&

#'(

(1) 11

𝐿! 	= max78𝑦"# − 𝑦$#89 (2) 12

where 𝑦"# represents the Poisson’s ratio value predicted from CNN; 𝑦$# represents 13

the ground-truth value from MD simulation; i is the feature number; 𝑛 is the total 14

feature number, which equals 100 here. The Adam optimization algorithm is adopted 15

here to train the CNN algorithm. The CNN model is incapable of generating the 2D 16

metamaterial structures, however it can predict the deformation-dependent Poisson’s 17

ratios of corresponding 2D metamaterial structures. The PyTorch is employed to train 18

and test the CNN model. It takes approximately 48 hours to train the model on the RTX 19

3080Ti GPU. 20

2.3 Cycle-GAN 21

The architecture of Cycle-GAN can be illustrated with the Encoder and Decoder 1

connected in red lines; take the model figure and the curve figure as data A and B from 2

two different datasets, if A and B can be paired, then Encoder can transform A to B; in 3

what follows, Decoder can transform B to A; this makes up the adversarial attack for 4

training. However, it shall be noted that Cycle-GAN is stipulated for image processing 5

because a certain apparent similarity between two pairs is necessitated. Several 6

modifications are applied to overcome this limitation. 7

In training Procedure, we construct the loss function for Decoder as follows 8

𝐿𝑜𝑠𝑠)&"*+,$ = 𝐵𝐶𝐸	𝐿𝑜𝑠𝑠 + 𝑀𝑆𝐸	𝐿𝑜𝑠𝑠 + 0.1 ∗ 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1𝐿𝑜𝑠𝑠 (3) 9
 10

𝐵𝑖𝑛𝑎𝑟𝑦	𝑐𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦	(𝐵𝐶𝐸) loss is calculated from Discriminator; 11

𝑀𝑆𝐸	𝑙𝑜𝑠𝑠 is determined by the error between input curve and the curve from Encoder; 12

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1𝐿𝑜𝑠𝑠 is a pixel-wise error between the actual image model and the model 13

from Decoder. After the repetitive process of trial and error, we determine the 14

coefficient of 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1𝐿𝑜𝑠𝑠 0.1 from this supervised learning setup. Adam 15

optimization algorithm is also adopted here. The PyTorch is employed to train and test 16

the Cycle-GAN model. It takes around 60 hours to train the model on the RTX 3080Ti 17

GPU. 18

