SUPPORTING INFORMATION

Revealing the pH-Dependent Mechanism of Nitrate Electrochemical reduction to Ammonia on Single-Atom Catalysts

Jingjing Yan^{#1}, Haoxiang Xu^{#1}, Le Chang², Aijun Lin^{*1}, and Daojian Cheng^{*1}

¹State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing

100029, People's Republic of China

² Yangtze Delta Region Institute (Huzhou) & School of Resources and Environment, University of Electronic Science and Technology of China, Huzhou 313001, PR China
* Corresponding authors. E-mail addresses: <u>chengdj@mail.buct.edu.cn</u> (D. Cheng), <u>linaj@mail.buct.edu.cn</u> (A. Lin)

These authors contribute equally.

SUPPORTING INFORMATION	1
PART I. Supplemental Notes	2
PART II. Supplemental Figures	7
PART III. Supplemental Tables	22

_Toc96270571

PART I. Supplemental Notes

Supplemental Note 1

For the single atom adsorption on basal plane, its thermodynamic stability is judged based on the formation energy E_{form} . When metal atoms are adsorbed on the basal plane of MoS₂, the calculation formula is as follows:

$$E_{form} = E_{TM - MoS_2} - E_{TM} - E_{MoS_2}$$

For replacing Mo or S of the basal plane, the calculation formula is as follows:

$$E_{form} = E_{TM - MoS_2} + E_{TM} - E_{MoS_2} - E_{Mo/S}$$

When the metal atoms are loaded on the molybdenum disulfide edge surface, the formation energy is calculated as follows:

$$E_{form} = E_{TM - MoS_2} - E_{TM} - E_{MoS_2} - 8n * E_S$$

Among them, n refers to the coverage of S atoms, and the values are 12.5%, 25%, 37.5%, 50%. $E_{TM-MoS2}$, E_{TM} , E_{MoS2} , and E_S are the energies of TM-MoS₂, transition metal atom from bulk, MoS₂ slab, and S atom from bulk after considering the coverage of S atoms, respectively."

Supplemental Note 2

To avoid calculating the energy of charged NO_3^- directly, gaseous HNO₃ and H₂ is chosen as a reference instead^[1]. The adsorption energy of NO_3^- (ΔG_{*NO3}) is described as

$$\Delta G_{*NO3} = G_{*NO3} - G_{*} - G_{HNO3(g)} + 1/2G_{H2(g)}$$

where G_{*NO3} , G_* , $G_{HNO3(g)}$, and $G_{H2(g)}$ are the Gibbs free energy of NO_3^- adsorbed on substrates, as well as HNO_3 and H_2 molecules in the gas phase, respectively. The adsorption free energy of other intermediates on SACs were also calculated by taking gaseous HNO_3 and H_2 as a reference. Elementary steps of NO₃RR

$$NO_3^-+H^++* \rightarrow NO_3H^*$$
 R1

$$NO_3H^* + H^+ + e^- \rightarrow NO_2^* + H_2O$$
 R2-1

$$NO_{3}H^{*}+H^{+}+e^{-} \rightarrow NO_{3}H_{2}^{*}$$
 R2-2

$$NO_3H^{*+}H^{+}+e^{-} \rightarrow O_2N^{*}+H_2O \qquad R2-3$$

$$NO_2^* + H^+ + e^- \rightarrow NO_2 H^*$$
 R3-1

$$NO_{3}H_{2}^{*} + H^{+} + e^{-} \rightarrow O_{2}NH^{*} + H_{2}O \qquad R3-2$$

$$O_2N^* + H^+ + e^- \rightarrow O_2NH^*$$
 R3-3

$$NO_2H^* + H^+ + e^- \rightarrow NO^* + H_2O$$
 R4-1

$$NO_2H^* + H^+ + e^- \rightarrow N^*O^* + H_2O \qquad R4-2$$

$$O_2 NH^* + H^+ + e^- \rightarrow ON^* + H_2 O \qquad R4-3$$

$$NO^* + H^+ + e^- \rightarrow NOH^*$$
 R5-1

$$N*O* + H^+ + e^- \rightarrow N*OH*$$
 R5-2

$$ON* + H^+ + e^- \rightarrow ONH^*$$
 R5-3

$$NOH^* + H^+ + e^- \rightarrow N^* + H_2O \qquad R6-1$$

$$N*OH* + H^+ + e^- \rightarrow N* + H_2O$$
 R6-2

$$ONH^* + H^+ + e^- \rightarrow OHNH^* \qquad R6-3$$

$$N^* + H^+ + e^- \rightarrow NH^*$$
 R7-1

$$OHNH^{*+}H^{+}+e^{-} \rightarrow NH^{*}+H_{2}O \qquad R7-2$$

$$NH^* + H^+ + e^- \rightarrow NH_2^*$$
 R8

$$NH_2^* + H^+ + e^- \rightarrow NH_3^*$$
 R9

$$NH_3^* \rightarrow NH_3(g) + *$$
 (PH=9.27-14) R10-1

$$NH_3^* + H^+ \rightarrow NH_4^{++*}$$
 (PH=0-9.27) R10-2

For each intermediate, the calculation of free energy is shown as follow.

$G(*)=E(*)+ZPE+T\Delta S$

For each elementary step, the Gibbs reaction free energy ΔG is the difference between the free energies of the reactants and products, and is expressed as follows. Since electron transfer is involved in the elementary reaction step and the reaction uses RHE as the reference electrode, $G(H^++e^-) = 1/2G_{H2}$.

$$\Delta G_1^0 = G(NO_3H^*) - G(NO_3^-) - G(H^+ + e^-)$$

 $\Delta G_{2-1}^{0} = G(NO_2^*) + G(H_2O) - G(NO_3H^*) - G(H^+ + e^-)$

 $\Delta G_{2-2}^{0} = G(NO_3H_2^*) - G(NO_3H^*) - G(H^+ + e^-)$

 $\Delta G_{2-3}^{0} = G(O_2N^*) + G(H_2O) - G(NO_3H^*) - G(H^+ + e^-)$

 $\Delta G_{3-1}^{0} = G(NO_2H^*) - G(NO_2^*) - G(H^+ + e^-)$

 $\Delta G_{3-2}^{0} = G(O_2NH^*) + G(H_2O) - G(NO_3H_2^*) - G(H^+ + e^-)$

 $\Delta G_{3-3}^{0} = G(O_2 N H^*) - G(O_2 N^*) - G(H^+ + e^-)$

 $\Delta G_{4-1}^{0} = G(NO^{*}) + G(H_2O) - G(NO_2H^{*}) - G(H^{+}+e^{-})$

 $\Delta G_{4-2}^{0} = G(N*O*) + G(H_2O) - G(NO_2H*) - G(H^+ + e^-)$

 $\Delta G_{4-3}^{0} = G(ON^{*}) + G(H_2O) - G(O_2NH^{*}) - G(H^{+}+e^{-})$

 $\Delta G_{5-1}^{0} = G(NOH^{*}) - G(NO^{*}) - G(H^{+} + e^{-})$

```
\Delta G_{5-2}^{0} = G(N*OH*) - G(N*O*) - G(H^++e^-)
```

```
\Delta G_{5-3}^{0} = G(ONH^*) - G(ON^*) - G(H^+ + e^-)
```

```
\Delta G_{6-1}^{0} = G(N^{*}) + G(H_2O) - G(NOH^{*}) - G(H^{+} + e^{-})
```

```
\Delta G_{6-2}^{0} = G(N^*) + G(H_2O) - G(N^*OH^*) - G(H^+ + e^-)
```

```
\Delta G_{6-3}^{0} = G(OHNH^*) - G(ONH^*) - G(H^+ + e^-)
```

 $\Delta G_{7-1}^{0} = G(NH^*) - G(N^*) - G(H^+ + e^-)$

 $\Delta G_{7-2}^{0} = G(NH^*) + G(H_2O) - G(OHNH^*) - G(H^+ + e^-)$

 $\Delta G_8^0 = G(NH_2^*) - G(NH^*) - G(H^+ + e^-)$

 $\Delta G_9^0 = G(NH_3^*) - G(NH_2^*) - G(H^+ + e^-)$

```
\Delta G_{10-1}^{0} = G(*) + G(NH_3) - G(NH_3^*)
```

```
\Delta G_{10-2}^{0} = G(*) + G(NH_4^+) - G(NH_3^*) - G(H^+)
```

Correction of pH to Gibbs free energy^[2], where k_B is the Boltzmann constant and T is the room temperature.

 $\Delta G_{1} = \Delta G_{1}^{0}$ $\Delta G_{2} = \Delta G_{2}^{0} + k_{B} T \ln 10 \times pH$ $\Delta G_{3} = \Delta G_{3}^{0} + k_{B} T \ln 10 \times pH$ $\Delta G_{4} = \Delta G_{4}^{0} + k_{B} T \ln 10 \times pH$

$$\begin{split} &\Delta G_5 = \Delta G_5^0 + k_B T ln 10 \times p H \\ &\Delta G_6 = \Delta G_6^0 + k_B T ln 10 \times p H \\ &\Delta G_7 = \Delta G_7^0 + k_B T ln 10 \times p H \\ &\Delta G_8 = \Delta G_8^0 + k_B T ln 10 \times p H \\ &\Delta G_9 = \Delta G_9^0 + k_B T ln 10 \times p H \\ &\Delta G_{10} = \Delta G_{10}^0 \end{split}$$

Supplemental Note 3

HER is regarded as the most competitive reaction to $NO_3RR^{[3]}$. If we assume: (1) the mass and electron transfer are not the rate determining factors for both HER and NO_3RR , (2) only HER and NO_3RR are competing reactions, and (3) the selectivity of NO_3RR in comparison to HER could be estimated by Boltzmann distribution, the Faradaic efficiency of NO_3RR can be expressed as:

$$\frac{1}{f_{\text{NO3RR}} = 1 + e^{\frac{-\delta G}{kBT}} \times 100\%}$$

where δG is Gibbs free energy difference between HER and NO₃RR potential determining step, k_B is the Boltzmann constant, and T is the room temperature.

Supplemental Note 4

We evaluated the thermodynamic and electrochemical stabilities of these 16 SA-MoS₂ monolayers by the formation energy E_f and dissolution potential U_{diss} , which are defined as^[4]

$$E_{f} = E_{TM - MoS2} - E_{MoS2} - E_{M}$$
$$U_{diss} = U_{diss}^{\circ} (metal, bulk) - E_{f}/ne$$

where E_M is the total energy of metal atom in its most stable bulk structure, $E_{TM-MoS2}$ and E_{MoS2} are the total energies of SA-MoS₂ and substrate, $U^{\circ}_{diss}(metal, bulk)$ and nare the standard dissolution potential from bulk metal to solute and the number of electrons involved in the dissolution process, respectively. The values of E_f and U_{diss} are listed in **Table S28**.

Supplemental Note 5

In this section, we construct a chemical-potential-based thermodynamic model to explore how to improve the stability of SAs under realistic conditions. Its chemical potential μ_{NP} (R) can be expressed by the Gibbs–Thomson (G-T) relation, as shown in^[5]

$$\mu_{Np}(R) = 2 \Omega \gamma_{me}/R$$
$$\mu_{SA} \approx E_{SA/ox} - E_B - E_{ox}$$
$$\Delta E_{SA}^{f}(R) = \mu SA - \mu Np(R)$$

where $E_{SA/ox}$ is the total energy of metal SA absorbed on an oxide surface, E_B the energy of bulk metal per atom, and E_{ox} the energy of the slab.

PART II. Supplemental Figures

Supplementary Figure 1. Side view of the structures of TM (Fe, Co, Ni, Mn) replacing Mo and S atom of basal-MoS₂.

Supplementary Figure 2. Side view of the structures of TM (Fe, Co, Ni, Mn) adsorbed on different sites of basal-MoS₂.

Supplementary Figure 3. Side view of the structures of TM (Fe, Co, Ni, Mn) embedded on different coverage of S atoms of edge-MoS₂.

Supplementary Figure 4. The crystal orbital Hamilton populations (COHPs) of Co adsorbed on different coverage of S atoms of edge-MoS₂. The bonding contribution of Co-S in COHP are depicted by red.

Supplementary Figure 5. Two configurations (1-O, 2-O) of NO₃ and NO₃H. The spheres with various colors represent Metal (blue), O (red), N (grey), and H (white).

Supplementary Figure 6. Free energy diagrams of NO_3RR via the four pathways on SA-MoS₂ at pH=0, respectively.

Supplementary Figure 7. Free energy diagrams of NO_3RR via the four pathways on SA-MoS₂ at pH=7, respectively.

Supplementary Figure 8. Free energy diagrams of NO_3RR via the four pathways on SA-MoS₂ at pH=14, respectively.

Figure S9. Free energies diagram of NO₃RR on EA-Co derived from PBE+U method. Four kinds of NO₃RR pathways at (a) pH = 0, (b) pH = 7, and (c) pH = 14.

Supplementary Figure 10. The determined BEP scaling relations between (G_{NO^*}, G_{NH2^*}) and ΔG_{1-10} for the nitrate reduction process. The parameters of the linear fits are provided.

Supplementary Figure 11. Contour plot of limiting potential (v.s. RHE) as a function of the Gibbs adsorption free energy of *NO (G(NO*)) and *NH₂ (G(NH₂*)) at (b) pH = 0, (c) pH = 7, and (d) pH = 14.

Supplementary Figure 12. a) The computed partial density of states (PDOS) of p-orbitals of S atom in BS-TM (TM=Fe, Co, Ni, Mn). b) The computed partial density of states (PDOS) of d-orbitals of Co atom in ES, BS, BA, EA-Co. c) Correlation between the p-band center of S atoms for BS-TM and G(NO*), G(NH₂*). The computed partial density of states (PDOS) by PBE and PBE+U methods are depicted by pink and blue, respectively. d) Correlation between the d-band center of Co single atoms on diverse support sites and G(NO*), G(NH₂*).

Supplementary Figure 13. The crystal orbital Hamilton populations (COHPs) of NO* in BS-TM (TM=Fe, Co, Ni, Mn) and ES, BS, BA, EA-Co. The bonding contribution of N and O in COHP are depicted by red and green, respectively.

Supplementary Figure 14. The computed partial density of states (PDOS) and the crystal orbital Hamilton populations (COHPs) of NH_2^* in BS-TM (TM=Fe, Co, Ni, Mn). The bonding contribution of N and H in COHP are depicted by blue and orange, respectively.

Supplementary Figure 15. The computed partial density of states (PDOS) and the crystal orbital Hamilton populations (COHPs) of NH₂* in EA, BA, ES, BS-Co. The bonding contribution of N and H in COHP are depicted by red and green, respectively.

Supplementary Figure 16. Competing relationship between NO₃RR and HER on (a) BA-Fe, (b) BS-Fe, (c) EA-Fe and (d) ES-Fe.

Supplementary Figure 17. Competing relationship between NO₃RR and HER on (a) BA-Co, (b) BS-Co, (c) EA-Co and (d) ES-Co.

Supplementary Figure 18. Competing relationship between NO₃RR and HER on (a) BA-Ni, (b) BS-Ni, (c) EA-Ni and (d) ES-Ni.

Supplementary Figure 19. Competing relationship between NO₃RR and HER on (a) BA-Mn, (b) BS-Mn, and (c) ES-Mn.

Supplementary Figure 20. Pourbaix diagram for the electrochemical dissolution process of SA-MoS₂, at 25°C. The orange dotted line represents the limiting potential of SA-MoS₂ at different pH. Comparison between chemical potential of NPs, $\mu_{NP}(R)$, and that of SAs, μ_{SA} , with respect to curvature of NPs. Black line, $\mu_{NP}(R)$; colored lines, μ_{SA} of SA-MoS₂.

PART III. Supplemental Tables

Supplementary Table 1. Formation energy of different substitution of TM-Basal MoS₂.

Substitution Atom	Мо	S
$Fe-E_{form}/eV$	3.509	4.939
$Co-E_{form}/eV$	4.139	4.373
Ni - E_{form}/eV	-2.213	-0.254
Mn - E_{form}/eV	2.363	5.322

Supplementary Table 2. Formation energy of different adsorption sites of TM-Basal MoS_2 .

Adsorption site	Тор-Мо	Top-S	Bridge-Mo	Bridge-S
$Fe-E_{form}/eV$	3.123	4.069	7.459	3.304
Co - E_{form}/eV	2.621	4.275	7.458	2.630
Ni - E_{form}/eV	1.958	3.609	5.809	1.961
Mn - E_{form}/eV	4.310	4.331	12.690	4.312

Supplementary Table 3. Formation energy of different S-coverage of TM-Edge MoS₂.

S-Coverage	12.5%	25%	37.5%	50%	
$Fe-E_{form}/eV$	-2.7093	-5.5274	-6.1308	-8.3711	
$Co-E_{form}/eV$	-2.5667	-2.7220	-5.8470	-6.4967	
$Co-E_{form}$	-1.3767	-1.5239	-4.6237	-5.0468	
(PBE+U)/eV					
Ni-E _{form} /eV	-3.2107	-3.8616	-5.8078	-6.2296	
Mn - E_{form}/eV	-3.1241	-4.3467	-6.0229	-6.5569	

Supplementary Table 4. The values of U-J parameters for PBE+U calculations

3d	Mn	Fe	Со	Ni
U-J	3.06	3.29	3.42	3.4

Supplementary Table 5. The adsorption energy of NO₃ and NO₃H on SA-MoS₂.

	$\Delta G(NO_3^*)/eV$	$\Delta G(NO_3H^*)/eV$	
BA-Fe	0.182	0.164	
BS-Fe	1.020	0.910	
EA-Fe	1.623	1.551	
ES-Fe	0.784	0.620	
BA-Co	0.149	0.142	
BS-Co	0.991	0.881	
EA-Co	0.113	0.001	
ES-Co	0.623	0.505	
BA-Ni	0.565	0.322	
BS-Ni	0.692	0.499	

EA-Ni	0.369	0.251
ES-Ni	0.986	0.863
BA-Mn	-0.684	-0.991
BS-Mn	1.201	0.991
EA-Mn	-0.528	-0.876
ES-Mn	-0.944	-1.510

Supplementary Table 6. Computed	adsorption	energies,	zero-point	energies and	l entropy
of reaction intermediates on Fe.					

Reaction Intermedi ates		BA-Fe			BS-Fe			EA-Fe			ES-Fe	
	E _{ads} (e V)	ZPE(e V)	TS(e V)									
*NO ₃ H	0.164	0.685	0.201	0.910	0.700	0.275	1.472	0.660	0.263	0.620	0.700	0.271
NO_2*	-2.020	0.266	0.200	-0.094	0.256	0.223	-0.978	0.253	0.230	-2.458	0.274	0.166
O_2N^*	-1.900	0.412	0.184	-0.082	0.443	0.146	-0.923	0.376	0.163	-2.361	0.389	0.152
*NO ₂ H	-3.738	0.512	0.215	-0.920	0.545	0.302	-2.132	0.594	0.189	-1.410	0.535	0.234
$*NO_2H_2$	-4.200	0.845	0.196	-1.400	0.865	0.200	-2.633	0.823	0.187	-1.980	0.869	0.223
NO*	-4.498	0.200	0.149	-1.513	0.223	0.152	-2.538	0.214	0.135	-3.843	0.216	0.126
ON*	-4.472	0.132	0.167	-1.421	0.139	0.188	-2.487	0.141	0.145	-3.565	0.136	0.158
N*O*	-4.465	0.167	0.195	-1.324	0.168	0.186	-2.332	0.170	0.191	-3.262	0.169	0.210
*NOH	-3.385	0.455	0.206	-1.335	0.414	0.260	-3.352	0.475	0.150	-3.941	0.512	0.089
*NHOH	-3.721	0.531	0.074	-1.321	0.792	0.133	-1.362	0.785	0.168	-2.975	0.777	0.133
*N	-4.193	0.085	0.054	-2.289	0.086	0.056	-3.731	0.083	0.051	-3.640	0.085	0.058
*NH	-4.801	0.353	0.073	-3.258	0.372	0.069	-2.392	0.337	0.093	-3.881	0.304	0.069
*NH2	-5.798	0.643	0.078	-4.161	0.698	0.090	-4.120	0.663	0.117	-5.079	0.658	0.126
*NH3	-6.358	1.011	0.186	-5.184	0.944	0.279	-4.067	1.027	0.155	-5.940	1.035	0.137
*NH4 ⁺	-4.152	2.502	1.925	-4.188	2.609	1.896	-3.412	2.421	2.202	-5.323	2.532	2.001

Supplementary Table 7. Computed adsorption energies, zero-point energies and entropy of reaction intermediates on Co.

Reaction Intermedi ates		BA-Co			BS-Co			EA-Co			ES-Co	
	E _{ads} (e V)	ZPE(e V)	TS(e V)									
*NO₃H	0.142	0.697	0.258	0.881	0.700	0.272	0.000 6	0.696	0.246	0.863	0.704	0.250
NO_2*	-2.023	0.285	0.153	-0.515	0.300	0.227	-2.564	0.286	0.193	-1.670	0.294	0.155
O_2N^*	-1.968	0.412	0.184	-0.441	0.443	0.146	-2.382	0.376	0.163	-1.994	0.389	0.152
*NO ₂ H	-2.330	0.569	0.261	-0.875	0.534	0.256	-4.267	0.581	0.251	-0.982	0.581	0.209
$*NO_2H_2$	-2.966	0.845	0.196	-1.369	0.865	0.200	-4.779	0.823	0.187	-1.365	0.869	0.223
NO*	-4.642	0.204	0.151	-1.993	0.200	0.174	-4.785	0.194	0.158	-2.104	0.195	0.092
ON*	-4.232	0.132	0.167	-1.758	0.139	0.188	-4.552	0.141	0.145	-1.951	0.136	0.158
N*O*	-4.441	0.167	0.195	-1.748	0.168	0.186	-4.647	0.170	0.191	-2.001	0.169	0.210
*NOH	-2.958	0.452	0.198	-1.503	0.450	0.166	-4.597	0.484	0.139	-1.877	0.471	0.114
*NHOH	-3.235	0.755	0.178	-2.315	0.792	0.133	-3.410	0.785	0.168	-2.470	0.777	0.133
*N	-3.220	0.085	0.054	-2.572	0.086	0.056	-5.970	0.093	0.035	-1.075	0.086	0.045

*NH	-4.198	0.300	0.033	-3.520	0.358	0.084	-6.623	0.378	0.058	-2.345	0.287	0.091
$*NH_2$	-5.629	0.644	0.088	-4.760	0.701	0.091	-6.253	0.666	0.120	-4.015	0.618	0.077
*NH3	-6.348	1.023	0.185	-5.196	0.938	0.228	-6.489	1.033	0.165	-5.640	1.040	0.131
*NH4 ⁺	-3.902	2.563	1.837	-4.770	2.597	1.874	-6.247	2.681	2.200	-3.716	2.558	1.967

Supplementary Table 8. Computed adsorption	energies, zero	-point en	ergies and	entropy
of reaction intermediates on Ni.				

Reaction Intermedi ates		BA-Ni			BS-Ni			EA-Ni			ES-Ni	
	E _{ads} (e V)	ZPE(e V)	TS(e V)									
*NO ₃ H	0.322	0.703	0.261	0.499	0.701	0.337	0.251	0.705	0.258	0.863	0.693	0.213
NO_2*	-1.395	0.273	0.199	-0.836	0.306	0.219	-2.881	0.286	0.193	-1.670	0.294	0.161
O_2N^*	-1.330	0.412	0.184	-0.668	0.443	0.146	-2.632	0.376	0.163	-1.232	0.389	0.152
$*NO_2H$	-1.969	0.573	0.202	-1.165	0.533	0.196	-2.336	0.581	0.251	-0.982	0.575	0.203
NO_2H_2	-2.359	0.845	0.196	-1.665	0.865	0.200	-2.669	0.823	0.187	-1.331	0.869	0.223
NO*	-3.094	0.176	0.168	-2.382	0.166	0.189	-3.773	0.194	0.158	-2.105	0.164	0.183
ON^*	-2.787	0.132	0.167	-2.221	0.139	0.188	-3.520	0.141	0.145	-1.998	0.136	0.158
N*O*	-2.889	0.167	0.195	-2.332	0.168	0.186	-3.002	0.170	0.191	-2.014	0.169	0.210
*NOH	-1.975	0.461	0.193	-1.895	0.455	0.156	-2.738	0.463	0.185	-1.877	0.465	0.140
*NHOH	-3.023	0.775	0.163	-2.672	0.796	0.128	-4.591	0.780	0.145	-2.470	0.787	0.139
*N	-1.944	0.080	0.077	-2.471	0.085	0.057	-6.147	0.078	0.051	-1.075	0.082	0.063
*NH	-3.459	0.272	0.071	-3.986	0.362	0.079	-7.032	0.377	0.057	-3.345	0.300	0.075
$*NH_2$	-5.132	0.638	0.164	-5.090	0.696	0.111	-7.110	0.666	0.120	-4.015	0.643	0.092
*NH3	-6.293	1.024	0.186	-5.471	0.931	0.121	-6.408	1.033	0.165	-5.640	1.024	0.150
*NH4 ⁺	-3.798	2.613	1.932	-5.161	2.595	1.918	-6.405	2.681	2.200	-3.716	2.406	2.137

Supplementary Table 9. Computed adsorption energies, zero-point energies and entropy of reaction intermediates on Mn.

Reaction Intermedi ates		BA- Mn			BS- Mn			EA- Mn			ES- Mn	
	E _{ads} (e V)	ZPE(e V)	TS(e V)									
*NO₃H	-0.991	0.707	0.304	0.991	0.695	0.216	-0.876	0.658	0.259	-1.510	0.656	0.290
NO_2*	-3.221	0.272	0.221	-0.109	0.256	0.231	-2.929	0.290	0.183	-3.014	0.286	0.171
O_2N^*	-2.987	0.412	0.184	0.002	0.443	0.146	-2.668	0.376	0.163	-2.875	0.389	0.152
$*NO_2H$	-2.806	0.568	0.271	-0.775	0.534	0.141	-2.300	0.556	0.262	-5.082	0.669	0.315
NO_2H_2	-3.112	0.845	0.196	-1.023	0.865	0.200	-2.600	0.823	0.187	-5.368	0.869	0.223
NO*	-5.325	0.196	0.156	-1.247	0.144	0.181	-4.354	0.195	0.095	-5.811	0.215	0.127
ON*	-4.789	0.132	0.167	-1.023	0.139	0.188	-4.011	0.141	0.145	-5.623	0.136	0.158
N*O*	-4.997	0.167	0.195	-1.234	0.168	0.186	-4.204	0.170	0.191	-5.741	0.169	0.210
*NOH	-4.342	0.507	0.159	-1.255	0.394	0.168	-4.302	0.471	0.170	-4.519	0.464	0.140
*NHOH	-4.228	0.775	0.163	-1.178	0.796	0.128	-3.955	0.780	0.145	-6.143	0.730	0.155
*N	-5.901	0.080	0.077	-2.322	0.085	0.057	-5.880	0.078	0.051	-6.117	0.082	0.063
*NH	-6.151	0.338	0.112	-3.117	0.366	0.077	-5.753	0.358	0.093	-6.219	0.345	0.096

$*NH_2$	-6.635	0.666	0.122	-3.715	0.680	0.072	-6.281	0.667	0.113	-6.918	0.681	0.107
*NH3	-6.573	1.021	0.189	-5.145	0.915	0.126	-6.283	1.108	0.121	-6.534	1.107	0.109
$*NH_4^+$	-6.425	2.649	1.919	-0.167	2.595	1.918	-6.188	2.496	2.112	-7.519	2.498	1.900

Supplementary Table 10. Calculated Gibbs free energies change of elementary step in NO₃RR on BA-Fe at different pH.

	рН=0	pH=7	<i>pH=14</i>
*→*NO ₃ H	0.164	0.164	0.164
NO ₃ H→O ₂ N	-2.184	-1.765	-1.346
$O_2N^* \rightarrow NO_2H$	-1.762	-1.343	-0.924
NO ₂ H→ON	-0.716	-0.297	0.122
ON*→*NOH	1.113	1.532	1.951
*NOH→*NHOH	-0.337	0.083	0.502
*NHOH→*NH	-1.080	-0.660	-0.241
$*NH \rightarrow *NH_2$	-0.997	-0.578	-0.159
$*NH_2 \rightarrow *NH_3$	-0.560	-0.141	0.278
$^{*}NH_{3} {\rightarrow} ^{*}NH_{4}{}^{+}$	2.201	2.201	/

Supplementary Table 11. Calculated Gibbs free energies change of elementary step in NO₃RR on BS-Fe at different pH.

	рН=0	pH=7	pH=14
*→*NO ₃ H	0.910	0.910	0.910
$NO_3H \rightarrow O_2N^*$	-1.004	-0.585	-0.166
$O_2N^* \rightarrow NO_2H$	-0.825	-0.406	0.013
NO ₂ H→ON	-0.594	-0.175	0.244
ON*→*NOH	0.179	0.598	1.017
*NOH→*NHOH	-0.954	-0.535	-0.116
*NHOH→*NH	-0.969	-0.550	-0.131
$*NH \rightarrow *NH_2$	-0.903	-0.484	-0.065
$*NH_2 \rightarrow *NH_3$	-1.023	-0.604	-0.185
$*NH_3 \rightarrow *NH_4^+$	0.996	0.996	/

Supplementary Table 12. Calculated Gibbs free energies change of elementary step in NO₃RR on EA-Fe at different pH.

	рН=0	pH=7	pH=14
*→*NO ₃ H	1.472	1.472	1.472
NO ₃ H→O ₂ N	-2.449	-2.030	-1.611
$O_2N^* \rightarrow *NO_2H$	-1.154	-0.735	-0.316
NO ₂ H→ON	-0.407	0.012	0.413
ON*→*NOH	-0.814	-0.395	0.024
*NOH→*NHOH	-0.378	0.041	0.460
*NHOH→*NH	1.339	1.758	2.177
$*NH \rightarrow *NH_2$	-1.729	-1.310	-0.891
$*NH_2 \rightarrow *NH_3$	0.053	0.472	0.891
$*NH_3 \rightarrow *NH_4^+$	0.655	0.655	/

	рН=0	pH=7	pH=14
*→*NO ₃ H	0.620	0.620	0.620
NO ₃ H→O ₂ N	-2.981	-2.562	-2.143
$O_2N^* \rightarrow NO_2H$	0.952	1.371	1.790
NO ₂ H→ON	-2.433	-2.014	-1.595
ON*→*NOH	-0.098	0.321	0.740
*NOH→*NHOH	0.301	0.720	1.139
*NHOH→*NH	-0.241	0.178	0.597
$*NH \rightarrow *NH_2$	-1.198	-0.779	-0.360
$*NH_2 \rightarrow *NH_3$	-0.861	-0.442	-0.023
$^{*}\mathrm{NH}_{3} {\rightarrow} ^{*}\mathrm{NH}_{4}{^{+}}$	0.617	0.617	/

Supplementary Table 13. Calculated Gibbs free energies change of elementary step in NO₃RR on ES-Fe at different pH.

Supplementary Table 14. Calculated Gibbs free energies change of elementary step in NO₃RR on BA-Co at different pH.

	рН=0	рН=7	<i>pH=14</i>
*→*NO ₃ H	0.142	0.142	0.142
NO ₃ H→O ₂ N	-2.165	-1.746	-1.327
$O_2N^* \rightarrow NO_2H$	-0.307	0.112	0.531
NO ₂ H→ON	-2.312	-1.893	-1.474
ON*→*NOH	1.684	2.103	2.522
*NOH→*NHOH	-0.277	0.142	0.561
*NHOH→*NH	-0.964	-0.545	-0.126
*NH \rightarrow *NH ₂	-1.431	-1.012	-0.593
$*NH_2 \rightarrow *NH_3$	-0.719	-0.300	0.119
$^{*}\mathrm{NH}_{3} \mathrm{\longrightarrow} ^{*}\mathrm{NH}_{4} ^{+}$	2.446	2.446	/

Supplementary Table 15. Calculated Gibbs free energies change of elementary step in NO₃RR on BS-Co at different pH.

	<i>pH=0</i>	<i>pH=7</i>	pH=14
*→*NO ₃ H	0.881	0.881	0.881
NO ₃ H→O ₂ N	-1.395	-0.976	-0.138
$O_2N^* \rightarrow NO_2H$	-0.360	0.059	0.897
NO ₂ H→ON	-1.118	-0.699	0.139
ON*→*NOH	0.490	0.909	1.747
*NOH→*NHOH	-0.812	-0.393	0.445
*NHOH→*NH	-1.205	-0.786	0.052
$*NH \rightarrow *NH_2$	-1.240	-0.821	0.018
$*NH_2 \rightarrow *NH_3$	-0.436	-0.017	0.082
$*NH_3 \rightarrow *NH_4^+$	-1.069	-1.069	/

Supplementary Table 16. Calculated Gibbs free energies change of elementary step in NO₃RR on EA-Co at different pH.

	рН=0	рН=7	pH=14
*→*NO ₃ H	0.0006	0.0006	0.0006
NO ₃ H→O ₂ N	-2.565	-2.146	-1.727

$O_2N^* \rightarrow NO_2H$	-1.703	-1.284	-0.865
NO ₂ H→ON	-0.518	-0.099	0.320
ON*→*NOH	0.188	0.607	1.026
*NOH→*NHOH	-1.373	-0.954	-0.535
*NHOH→*NH	-0.653	-0.234	0.185
*NH \rightarrow *NH ₂	0.370	0.789	1.208
$*NH_2 \rightarrow *NH_3$	-0.0236	0.183	0.602
$*NH_3 \rightarrow *NH_4^+$	0.242	0.242	/

Supplementary Table 17. Calculated Gibbs free energies change of elementary step in NO₃RR on ES-Co at different pH.

	рН=0	pH=7	pH=14
*→*NO ₃ H	0.505	0.505	0.505
NO ₃ H→O ₂ N	-2.984	-2.565	-2.146
$O_2N^* \rightarrow NO_2H$	-0.418	0.001	0.420
NO ₂ H→ON	-0.277	0.142	0.561
ON*→*NOH	0.802	1.221	1.640
*NOH→*NHOH	-0.772	-0.353	0.066
*NHOH→*NH	-0.084	0.335	0.754
$*NH \rightarrow *NH_2$	-1.574	-1.155	-0.736
$*NH_2 \rightarrow *NH_3$	-1.219	-0.800	-0.381
$^{*}NH_{3} {\rightarrow} ^{*}NH_{4}{^{+}}$	0.519	0.519	/

Supplementary Table 18. Calculated Gibbs free energies change of elementary step in NO₃RR on BA-Ni at different pH.

	рН=0	<i>pH=7</i>	<i>pH=14</i>
*→*NO ₃ H	0.322	0.322	0.322
$NO_3H \rightarrow O_2N^*$	-1.717	-1.298	-0.879
$O_2N^* \rightarrow NO_2H$	-0.573	-0.154	0.265
NO ₂ H→ON	-1.125	-0.706	-0.287
ON*→*NOH	1.119	1.538	1.957
*NOH→*NHOH	-1.051	-0.632	-0.213
*NHOH→*NH	-0.434	-0.015	0.404
$*NH \rightarrow *NH_2$	-1.673	-1.254	-0.835
$*NH_2 \rightarrow *NH_3$	-1.151	-0.732	-0.313
$^{*}\mathrm{NH}_{3} {\rightarrow} ^{*}\mathrm{NH}_{4}{^{+}}$	2.485	2.485	/

Supplementary Table 19. Calculated Gibbs free energies change of elementary step in NO₃RR on BS-Ni at different pH.

	рН=0	<i>pH</i> =7	<i>pH=14</i>
*→*NO ₃ H	0.499	0.499	0.499
NO ₃ H→O ₂ N	-1.336	-0.917	-0.498
$O_2N^* \rightarrow NO_2H$	-0.328	0.091	0.510
NO ₂ H→ON	-1.217	-0.798	-0.379
ON*→*NOH	0.487	0.906	1.325
*NOH→*NHOH	-0.778	-0.359	0.060
*NHOH→*NH	-1.313	-0.894	-0.475

*NH \rightarrow *NH ₂	-1.104	-0.685	-0.266
$*NH_2 \rightarrow *NH_3$	-0.381	0.038	0.457
$*NH_3 \rightarrow *NH_4^+$	0.310	0.310	/

Supplementary Table 20. Calculated Gibbs free energies change of elementary step in NO₃RR on EA-Ni at different pH.

	рН=0	рН=7	pH=14
*→*NO ₃ H	0.251	0.251	0.251
$NO_3H \rightarrow O_2N^*$	-3.132	-2.713	-2.293
$O_2N^* \rightarrow NO_2H$	0.545	0.964	1.383
NO ₂ H→ON	-1.437	-1.018	-0.599
ON*→*NOH	1.035	1.454	1.873
*NOH→*N	-3.409	-2.990	-2.571
*N→*NH	-0.885	-0.466	-0.047
$*NH \rightarrow *NH_2$	-0.078	0.341	0.760
$*NH_2 \rightarrow *NH_3$	0.702	1.121	-1.540
$*NH_3 \rightarrow *NH_4^+$	0.003	0.003	/

Supplementary Table 21. Calculated Gibbs free energies change of elementary step in NO₃RR on ES-Ni at different pH.

	рН=0	рН=7	<i>pH=14</i>
*→*NO ₃ H	0.863	0.863	0.863
NO ₃ H→O ₂ N	-2.533	-2.114	-1.694
$O_2N^* \rightarrow NO_2H$	0.688	1.107	1.526
NO ₂ H→ON	-1.123	-0.704	-0.285
ON*→*NOH	0.227	0.646	1.066
*NOH→*NHOH	-0.593	-0.174	0.245
*NHOH→*NH	0.125	0.544	0.963
$*NH \rightarrow *NH_2$	-1.670	-1.251	-0.832
$*NH_2 \rightarrow *NH_3$	-1.625	-1.206	-0.787
$*NH_3 \rightarrow *NH_4^+$	1.924	1.924	/

Supplementary Table 22. Calculated Gibbs free energies change of elementary step in NO₃RR on BA-Mn at different pH.

	рН=0	pH=7	pH=14
*→*NO ₃ H	-0.991	-0.991	-0.991
NO ₃ H→O ₂ N	-2.231	-1.812	-1.393
$O_2N^* \rightarrow NO_2H$	0.415	0.834	1.253
NO ₂ H→ON	-2.519	-2.100	-1.681
ON*→*NOH	0.984	1.403	1.822
*NOH→*N	-1.560	-1.141	-0.722
*N→*NH	-0.250	0.170	0.590
*NH \rightarrow *NH ₂	-0.484	-0.065	0.354
$*NH_2 \rightarrow *NH_3$	0.062	0.484	0.901
$*NH_3 \rightarrow *NH_4^+$	0.148	0.148	/

	рН=0	<i>pH=7</i>	pH=14
*→*NO ₃ H	0.991	0.991	0.991
$NO_3H \rightarrow O_2N^*$	-1.100	-0.681	-0.262
$O_2N^* \rightarrow NO_2H$	-0.666	-0.247	0.173
NO ₂ H→ON	-0.472	-0.053	0.366
ON*→*NOH	-0.009	0.411	0.830
*NOH→*N	-1.063	-0.644	-0.225
*N→*NH	-0.799	-0.38	0.040
$*NH \rightarrow *NH_2$	-0.600	-0.179	0.241
$*NH_2 \rightarrow *NH_3$	-1.431	-1.012	-0.593
$*NH_3 \rightarrow *NH_4^+$	1.088	1.088	/

Supplementary Table 23. Calculated Gibbs free energies change of elementary step in NO₃RR on BS-Mn at different pH.

Supplementary Table 24. Calculated Gibbs free energies change of elementary step in NO₃RR on EA-Mn at different pH.

	рН=0	<i>pH=7</i>	<i>pH=14</i>
*→*NO ₃ H	-0.875	-0.875	-0.875
NO ₃ H→O ₂ N	-2.054	-1.635	-1.216
$O_2N^* \rightarrow NO_2H$	0.629	1.148	1.467
$NO_2H \rightarrow ON^*$	-2.054	-1.635	-1.216
ON*→*NOH	0.052	0.471	0.890
*NOH→*N	-1.578	-1.159	-0.740
*N→*NH	0.127	0.546	0.965
$*NH \rightarrow *NH_2$	-0.528	-0.109	0.310
$*NH_2 \rightarrow *NH_3$	-0.001	0.418	0.837
$^{*}NH_{3} {\rightarrow} ^{*}NH_{4}{^{+}}$	0.094	0.094	/

Supplementary Table 25. Calculated Gibbs free energies change of elementary step in NO₃RR on ES-Mn at different pH.

	рН=0	pH=7	pH=14
*→*NO ₃ H	-1.510	-1.510	-1.510
NO ₃ H→O ₂ N	-1.504	-1.085	-0.666
$O_2N^* \rightarrow NO_2H$	-2.069	-1.650	-1.231
$NO_2H \rightarrow ON*$	-0.728	-0.309	0.110
ON*→*NOH	1.292	1.711	2.130
*NOH→*NHOH	-1.624	-1.205	-0.786
*NHOH→*NH	-0.076	0.343	0.762
$*NH \rightarrow *NH_2$	-0.699	-0.280	0.139
$*NH_2 \rightarrow *NH_3$	0.384	0.803	1.222
$*NH_3 \rightarrow *NH_4^+$	-0.985	-0.985	/

	ΔG_{l}	ΔG_2	ΔG_3	ΔG_4	ΔG_5	ΔG_6	ΔG_7	ΔG_8	ΔG_9	ΔG_{10}
Intercept	0.696	0.826	1.190	0	0.917	0.837	1.40	0.771	0	0.715
Slope	1.002	1.004	1.005	1	1.005	1	1.09	0.99	1	1.01
R^2	0.71	0.77	0.70	1	0.78	0.84	0.80	0.90	1	0.72

Supplementary Table 26. The parameters of $aG(NO^*)+bG(NH_2^*)$ and the parameter of linear fits in Figure 4a.

Supplementary Table 27. The parameters of $aG(NO^*)+bG(NH_2^*)$ and the parameter of linear fits in Figure S8.

	G(NO ₃ H*)	G(NO 2*)	G(NO 2H*)	G(NO *)	G(NO H*)	G(NH OH*)	G(N*)	G(NH *)	G(NH 2*)	G(NH 3*)
а	0.275	0.503	0.843	1	0.934	0.281	0.212	-0.252	0	0.178
b	0.311	0.245	-0.104	0	-0.261	0.778	1.128	1.629	1	0.326
Intercept	2.874	1.227	0.096	0	-1.074	2.004	3.647	3.459	0	-4.511
Slope	1.002	1.004	1.005	1	1.005	1	1.09	0.99	1	1.01

Supplementary Table 28. Calculated Faraday efficiencies for NO_3RR on SA-MoS₂ and MoS_2 substrates.

	MoS ₂	BA-Fe	BS-Fe	EA-Fe	ES-Fe	BA-Co	BS-Co	EA-Co	ES-Co
FE	0	0	0	0	0	0	0	100%	0
	BA-Ni	BS-Ni	EA-Ni	ES-Ni	BA-Mn	BS-Mn	EA-Mn	ES-Mn	
FE	0	99.9%	99.5%	0	0	0	0	0	

Supplementary Table 29. Formation energy (E_f) and dissolution potential (U_{diss}) of metals. For comparison, the standard dissolution potential (U°_{diss}) of metal atoms are also listed.

		Metal ion		Metal Hydroxide	
Metal	E _f (eV)	U° _{diss} (V)	U _{diss} (V)	U° _{diss} (V)	U _{diss} (V)
BS-Fe	3.509	-0.450	-2.205	-0.045	-1.799
EA-Co	-6.497	-0.280	2.968	-0.730	2.519
ES-Ni	-14.257	-0.260	6.869	0.490	7.619
BS-Mn	2.356	-1.190	-2.368	-1.470	-2.648
EA-Mn	-6.557	-1.190	2.088	-1.470	1.8085

Reference

- LIU J, RICHARDS D, SINGH N, et al. Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals [J]. ACS Catalysis, 2019, 9(8): 7052-7064.
- [2] VALDÉS A, QU Z W, KROES G J. Oxidation and photo-oxidation of water on TiO2 surface
 [J]. 2008, 112(26): 9872–9879.
- [3] LIU X, JIAO Y, ZHENG Y, et al. Building Up a Picture of the Electrocatalytic Nitrogen

Reduction Activity of Transition Metal Single-Atom Catalysts [J]. J Am Chem Soc, 2019, 141(24): 9664-9672.

- [4] GUO X, GU J, LIN S, et al. Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts [J]. J Am Chem Soc, 2020, 142(12): 5709-5721.
- [5] LIU J, WANG Y, LI J. Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria [J]. Journal of the American Chemical Society, 2017, 139(17): 6190-6199.