Supplementary Information

Analysis of Localized Excitons in Strained Monolayer

WSe₂ by First Principles Calculations

Jie Jiang^a and Ruth Pachter^a*

^aAir Force Research Laboratory, Materials and Manufacturing Directorate,

Wright-Patterson Air Force Base, Ohio 45433, USA

*Corresponding author: ruth.pachter@us.af.mil; Tel: 1-937-255-9689

Table S1. Exciton energies (in eV) for pristine and wrinkled monolayer WSe_2 by nano-indentation (R=1.5 nm and H= 0.1 nm).

Energy	Dark exciton	X _A	X_A^{2s}	X _B	X_B^{2s}	X _C
Pristine	1.53	1.58	1.90	2.02	2.37	2.82
Wrinkle	1.15	1.30	1.59	1.82	2.39	2.67

Fig. S1. Calculated A exciton energy (GW-BSE) vs. n_k for (a) $n_k \times n_k \times l k$ sampling for pristine monolayer WSe₂, and (b) $l \times n_k \times l k$ sampling in the GW-BSE for the nano-indented wrinkle (R=1.5 nm and H= 0.1 nm).

Fig. S2. (a) Height and (b) strain vs. x coordinate in the nano-indented WSe₂ monolayer; R = 5 nm and H = 0.31 nm.

Fig. S3. (a) Exciton energy vs. biaxial strain for the lowest energy dark exciton (black line) and A exciton (red line). (b) Energy difference between the A exciton and the lowest energy dark exciton vs. strain.

Fig. S4. (a) Exciton energy vs. biaxial strain for the A exciton (black) and the lowest SV exciton (red).(b) Energy difference between the A exciton and the lowest SV exciton vs. strain. Dots indicate the calculated data and the dashed line is a fit.