Supplementary Information

Decoupling Layer Metal-Organic-Frameworks via Ligand Regulation to Achieving Ultra-Thin Carbon Nanosheets for Oxygen Reduction Electrocatalysis

Zeming Tang, Guiqiang Cao, Cheng Jiang, Jianping He, Adeline Loh, Zhongxu Wang, Jingxiang Zhao, Xiaohong Li,* Qingxue Lai,* Yanyu Liang*

Supplementary Figures

Figure S1. SEM and TEM images of (a,b) 25% Zn(M/BIM) MOFs; (c,d) 25% Zn(M/BIM) MOFs and (e,f) 75% Zn(M/BIM) MOFs

Figure S2. FT-IR pattern of Zn(BIM) and 50% Zn(M/BIM)

Figure S3. The raw data of optimization step of (a) Zn(BIM) MOFs and (b) Zn(M/BIM) MOFs. Self-consistent field (SCF) convergence precision is set at 10⁻⁴.

Figure S4. (a,b) CV curves of N-C(BIM) and N-C(M/BIM).

Figure S5. XPS spectra of N-C(BIM) and N-C(M/BIM).

Figure S6. Energy dispersive spectrometer (EDS) spectra and elemental mapping images of UT-N@N-C(M/BIM).

Figure S7. XPS spectra of UT- N-C(M/BIM) and UT-N@N-C(M/BIM)

Figure S8. Raman spectra of N-C (M/BIM), UT-N-C (M/BIM) and UT-N@N-C (M/BIM).

Figure S9. (a) DFT-optimized carbon sites with different N-doping models; (b) ORR free energy diagrams calculated for the four C sites.

Figure S10. (a) CV curves of N-C(BIM) and N-C(M/BIM) on glassy carbon electrodes in O₂-saturated (solid line) and N₂-saturated (dash line) 0.1 M KOH; (b) Rotating ring-disk electrode voltammograms recorded with N-C(BIM) and N-C(M/BIM) in O₂-saturated 0.1 M KOH at 1,600 r.p.m.

Figure S11. (a,c) CV curves of UT-N-C(M/BIM) and UT-N@N-C(M/BIM); (b,d)The capacitive current measured at 1.00 V(vs.RHE) plotted as a function of scan rate of UT-N-C(M/BIM) and UT-N@N-C(M/BIM).

Figure S12. Percentage of peroxide (lower line) and the electron transfer number (n) (upper line) of UT-N-C(M/BIM) and UT-N@N-C(M/BIM).

Figure S13. (a,c)I-t curves and transfer charge of UT-N-C(M/BIM) and UT-N@N-C(M/BIM); (b,d)LSV curves of UT-N-C(M/BIM) and UT-N@N-C(M/BIM) before and after i-t operation.

Supplementary Tables

	С	Ν	0	Zn
N-C(BIM)	73.2	12.16	11.86	2.78
N-C(M/BIM)	80.22	10.69	6.95	2.5
UT-N-C(M/BIM)	85.14	6.82	7.68	0.36
UT-N@N-C(M/BIM)	87.52	6.71	5.62	0.15

Table S2. Different N content of MOFs-derived carbon (%)						
	N_1	N_2	N_3	N_4	N_5	
N-C(BIM)	37	26	11	7	19	
N-C(M/BIM)	51	9	19	11	10	
UT-N-C(M/BIM)	30	15	13	39	3	
UT-N@N-C(M/BIM)	33	10	18	34	5	

Table S3. ORR performance of previous reports and this work					
Catalysts	$E_{onset}(V)$	$E_{1/2}(V)$	Ref.		
UT-N@N-C(M/BIM)	0.98	0.89	-		
LTHT-FeP	0.92	0.83	[1]		
NFLGDY-900c	0.97	0.87	[2]		
AgClNW-0	1.01	0.82	[3]		
Fe-N-AC-1000	0.96	0.89	[4]		

Reference

[1] N. Zion, D. A. Cullen, P. Zelenay and L. Elbaz, *Angewandte Chemie*, 2020, **132**, 2504-251

[2] W. Sun and S. X. Dou, Chem, 2018, 4, 2024-2026.

[3] S.-j. Kim, S.-C. Lee, C. Lee, M. H. Kim and Y. Lee, Nano Energy, 2018, 48, 134-143.

[4] F. Zhang, D. Zhang, W. Liu, X. Li and Q. Chen, Carbon, 2022, 187, 67-77