# Monitoring the Nanoparticle Dissolution via Fluorescence-Colour Shift

Christian Ritschel<sup>a</sup>, Joanna Napp<sup>b,c</sup>, Frauke Alves<sup>b,c\*</sup> and Claus Feldmann<sup>a\*</sup>

- <sup>a</sup> Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany. E-mail: claus.feldmann@kit.edu
- <sup>b</sup> University Medical Center Goettingen (UMG), Institute for Diagnostic and Interventional Radiology, Robert Koch Str. 40, 37075 Goettingen, Germany
- <sup>c</sup> Max Planck Institute for Multidisciplinary Sciences, Translational Molecular Imaging, Hermann-Rein-Strasse 3, 37075 Goettingen, Germany. E-mail: falves@gwdg.de

# - SUPPORTING INFORMATION -

# **(SI)**

## **Content**

- 1. Analytical Techniques
- 2. IOH-NPs uniting PTC and ICG
- 3. Material Characterization [La(OH)]<sup>2+</sup>[ICG]<sup>-</sup><sub>2</sub>
- 4. Material Characterization [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4-</sup>
- 5. Material Characterization [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4-</sup>@LaPO<sub>4</sub>
- 6. In-vitro Studies

#### 1. Analytical Techniques

**Dynamic light scattering (DLS)** measurements of the IOH-NPs were performed in polystyrene cuvettes applying a Nanosizer ZS (Malvern Instruments, United Kingdom).

**Zeta potential** measurements of the IOH-NPs were conducted using an automatic titrator MPT-2 attached to a Nanosizer ZS. Titrations were performed by addition of 0.1 M HCl or 0.1 M NaOH.

**Scanning electron microscopy (SEM)** was conducted with a Zeiss Supra 40 VP (Zeiss, Germany), equipped with a field-emission gun and a resolution of 1.3 nm (at 15 kV). Due to the organics content, the IOH-NPs are highly sensitive to the electron beam. To minimize the sample decomposition, examinations were performed at 1 to 5 kV. Samples were prepared by placing small droplets of diluted aqueous suspensions on a silica wafer.

**Energy-dispersive X-ray spectroscopy (EDXS)** was performed with an Ametek EDAX device (Ametek, USA), mounted on the above described Zeiss SEM Supra 40 VP. For this purpose, powder samples of the dried IOH-NPs were fixed by conductive carbon pads on aluminium sample holders.

X-ray powder diffraction (XRD) was conducted on a Stadi-P diffractometer (Stoe, Germany) with Ge-monochromatized  $Cu-K_a$  radiation. Dried IOH-NP samples were fixed between Scotch tape and acetate paper.

**Fourier-transformed infrared (FT-IR)** spectra were recorded on a Bruker Vertex 70 FT-IR spectrometer (Bruker, Germany) in the range of 4000-450 cm<sup>-1</sup>. To this concern, 1 mg of the dried sample was mortared with 300 mg of dried KBr and pressed to a pellet that was analyzed in transmission.

**Thermogravimetry (TG)** was performed with a STA409C device (Netzsch, Germany). All measurements were performed in air. The IOH-NP samples were pre-dried (70 °C, 8 h) prior to TG analysis and thereafter heated to 1200 °C with a heating rate of 5 K min<sup>-1</sup> (20 mg, corundum crucibles).

**Elemental analysis (EA)** (C/H/N/S analysis) was performed via thermal combustion with an Elementar Vario Microcube device (Elementar, Germany) at a temperature of about 1100 °C.

**Photoluminescence (PL)** was recorded with a Horiba Jobin Yvon Spex Fluorolog 3 (Horiba Jobin Yvon, France) equipped with a 450 W Xe-lamp and double grating excitation and emission monochromators.

#### 2. IOH-NPs uniting PTC and ICG

In comparison to suspensions containing mixtures of  $[La(OH)]^{2+}[ICG]^{-2}$  and  $[La(OH)]^{2+}_{2}[PTC]^{4-}$  IOH-NPs,  $[La(OH)]^{2+}_{9}[(PTC)^{4-}_{2}(ICG)^{-}]_{2}$  IOH-NPs uniting both fluorescent dyes with an PTC : ICG ratio of 2 : 1 show two disadvantageous effects. First of all, these IOH-NPs show emission of ICG upon excitation of PTC (Figure S1a). Moreover and even more important, combining ICG and PTC in a single IOH-NP disturbs the  $\pi$ -stacking of PTC even at low ICG concentrations, so that the PTC emission is not quenched in the solid IOH-NPs. As a result, suspension and solution show intense green emission (Figure S1b). All in all, this points to the feasibility of the concept of mixing two different types of IOH-NPs to monitor particle dissolution via a shift of the emission.



**Figure S1.** Emission of  $[La(OH)]^{2+9}[(PTC)^{4-2}(ICG)^{-1}]_2$  IOH-NPs uniting both fluorescent dyes (PTC : ICG ratio of 2 : 1): a) emission spectra of aqueous suspension (spectra recorded with  $\lambda_{exc}(PTC)$ : 465 nm,  $\lambda_{exc}(ICG)$ : 781 nm); b) photo of aqueous suspension (with blue-light-emitting LED for excitation).

#### 3. Material Characterization [La(OH)]<sup>2+</sup>[ICG]<sup>-</sup><sub>2</sub>

The composition of the  $[La(OH)]^{2+}[ICG]^{-}_{2}$  IOH-NPs was examined by X-ray powder diffraction analysis (XRD), Fourier-transformed infrared (FT-IR) spectroscopy, thermogravimetry (TG) and elemental analysis (EA). XRD of the as-prepared  $[La(OH)]^{2+}[ICG]^{-}_{2}$  IOH-NPs do not show any Bragg peak indicating their non-crystalline (Figure S2).



Figure S2. XRD of the as-prepared [La(OH)]<sup>2+</sup>[ICG]<sup>-</sup><sub>2</sub> IOH-NPs.

The presence of ICG was proven by FT-IR spectra (Figure S3). Thus, spectra of the  $[La(OH)]^{2+}[ICG]^{-2}$  IOH-NPs fit well with the spectrum of Na(ICG) as the starting material. All characteristic vibrations of ICG are visible (especially including  $\nu$ (S=O): 1422 cm<sup>-1</sup>,  $\nu$ (S–O): 1090 cm<sup>-1</sup>, fingerprint area: 1050-500 cm<sup>-1</sup>). A broad vibration at 3600-3000 cm<sup>-1</sup> indicates the presence of water.



Figure S3. FT-IR spectra of the [La(OH)]<sup>2+</sup>[ICG]<sup>-</sup><sub>2</sub> IOH-NPs (with Na(ICG) as a reference).

EA revealed the composition with C/H/N/S amounts of 61.1 wt-% C, 5.3 wt-% H, 3.4 wt-% N, and 7.3 wt-% S (calculated: 62.2 wt-% C, 5.4 wt-% H, 3.2 wt-% N, 7.7 wt-% S).

Furthermore, TG shows two-step decomposition with a first weight loss (50-200 °C, 9.0 wt-%), which can be related to the release of adsorbed water (Figure S4a). A second weight loss (200-800 °C, 82.1 wt-% or 90.4 wt-% if the total weight was corrected for the amount of adsorbed water) can be related to the decomposition of ICG and fits well with the calculated value (89.6 wt-%). Finally, La<sub>2</sub>O<sub>3</sub> and (LaO)<sub>2</sub>SO<sub>4</sub> were identified as thermal residues via XRD (Figure S4b). Hence, the thermal decomposition can be ascribed to the following reaction: 4 [La(OH)]<sup>2+</sup>[C<sub>43</sub>H<sub>47</sub>N<sub>2</sub>O<sub>6</sub>S<sub>2</sub>]<sup>-</sup><sub>2</sub> + 432.5 O<sub>2</sub>  $\rightarrow$  La<sub>2</sub>O<sub>3</sub> + (LaO)<sub>2</sub>SO<sub>4</sub> + 15 SO<sub>2</sub> + 190 H<sub>2</sub>O + 8 N<sub>2</sub> + 344 CO<sub>2</sub>



**Figure S4.** Total organic combustion of the  $[La(OH)]^{2+}[ICG]^{-}_{2}$  IOH-NPs: (a) TG analysis, (b) XRD of the thermal remnant after the TG analysis (La<sub>2</sub>O<sub>3</sub>/ICDD-No. 01-071-5408, (LaO)<sub>2</sub>SO<sub>4</sub>/ICDD-No. 01-085-1535 as references).

The photoluminescence properties of the  $[La(OH)]^{2+}[ICG]^{-}$  IOH-NPs show the expected features of ICG with a strong visible absorption at 600-800 nm and deep-red emission at 800-850 nm (Figure S5; *see main paper: Figure 5a*).



**Figure S5.** Excitation spectrum of the [La(OH)]<sup>2+</sup>[ICG]<sup>-</sup><sub>2</sub> IOH-NPs (aqueous suspension) with aqueous solution of Na(ICG) as a reference.

### 4. Material Characterization [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4-</sup>

If  $[La(OH)]^{2+}_2[PTC]^{4-}$  was prepared without any additional measure to control the particle nucleation, micronsized rods with a length of 5-10 µm were obtained due to  $\pi$ -stacking of the PTC molecules (Figure S6). Therefore,  $[La(OH)]^{2+}_2[PTC]^{4-}$  was prepared either at elevated temperature (i.e. injection at 95 °C) (*see main paper: Figure 4*) or coated with a LaPO<sub>4</sub> shell to form  $[La(OH)]^{2+}_2[PTC]^{4-}$ @LaPO<sub>4</sub> core-shell IOH-NPs (*see Figure S11*). With these measures, the particles are still rod-shaped but with a length below 100 nm.



Figure S6. XRD of the as-prepared  $[La(OH)]^{2+}_2[PTC]^{4-}$  IOH-NPs (with PTCDA as a reference).

Similar to the [La(OH)]<sup>2+</sup>[ICG]<sup>-</sup><sub>2</sub> IOH-NPs, the composition of the [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4-</sup> IOH-NPs was examined by XRD, FT-IR spectroscopy, TG and EA. Here, XRD of the as-

prepared  $[La(OH)]^{2+}_2[PTC]^{4-}$  IOH-NPs shows at least weak Bragg peaks, which can be ascribed to the  $\pi$ -stacking of the perylene molecules (Figure S7).



Figure S7. XRD of the as-prepared  $[La(OH)]^{2+}_2[PTC]^{4-}$  IOH-NPs (with PTCDA as a reference).

The presence of PTC in the  $[La(OH)]^{2+}_2[PTC]^{4-}$  IOH-NPs was proven by FT-IR spectroscopy and compared to spectra of Na<sub>4</sub>(PTC) as the starting material (Figure S8). All characteristic vibrations of PTC are visible (especially including  $\nu$ (C=O): 1800-1600,  $\nu$ (C–O): 1600-1200, fingerprint area: 1050-500 cm<sup>-1</sup>). A broad vibration at 3600-3000 cm<sup>-1</sup> again indicates the presence of water.



**Figure S8.** FT-IR spectra of the [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4–</sup> IOH-NPs (with PTCDA as a reference).

Elemental analysis revealed the composition with C/H/N amounts of 38.9 wt-% C and 1.8 wt-% H (calculated: 39.1 wt-% C, 1.4 wt-% H).

Furthermore, TG shows three-step decomposition with a first weight loss (50-200 °C, 9.6 wt-%), which can be related to the release of adsorbed water (Figure S9a). A second weight loss (200-600 °C, 52.2 wt-%) as well as a third weight loss (600-800 °C, 3.8 wt-%) can be related to the decomposition of PTC and together (56.0 wt-% or 62.0 wt-% if the total weight was corrected for the amount of adsorbed water) fit well with the calculated value (60.0 wt-%). Finally,  $La_2O_3$  was identified as thermal residues via XRD (Figure S9b). Hence, the thermal decomposition can be ascribed to the following reaction:

 $[La(OH)]^{2+}{}_2[C_{24}H_8O_8]^{4-} + 23 O_2 \rightarrow 24 CO_2 + 5 H_2O + La_2O_3$ 



**Figure S9.** Total organic combustion of the  $[La(OH)]^{2+}_2[PTC]^{4-}$  IOH-NPs: (a) TG analysis, (b) XRD of the thermal remnant after the TG analysis (La<sub>2</sub>O<sub>3</sub>/ICDD-No. 01-071-5408 as reference).

The photoluminescence properties of the  $[La(OH)]^{2+}_2[PTC]^{4-}$  IOH-NPs show the expected features of PTC with a strong visible absorption at 350-500 nm and very intense emission at 500-700 nm with a maximum of 517 nm, which is comparable with a solution of Na<sub>4</sub>(PTC) (Figure S10; *see main paper: Figure 5b*).



Figure S10. Excitation spectra of the  $[La(OH)]^{2+}_2[PTC]^4$ -IOH-NPs (aqueous suspension) with aqueous solution of Na<sub>4</sub>(PTC) as a reference.

### 5. Material Characterization [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4-</sup>@LaPO<sub>4</sub>

### Synthesis

In alternative to the synthesis of [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4-</sup> IOH-NPs at elevated temperature (95 °C), the nucleation of the PTC-containing IOH-NPs, and specifically the suppression of the growth of needles due to  $\pi$ -stacking, can be also performed by the synthesis of [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4</sup>-@LaPO<sub>4</sub> core-shell IOH-NPs. To this concern, 6.3 mg (0.016 mmol) of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, abcr, 98%) were dissolved in 25 mL of 10 mmol/L NaOH by heating to 60 °C. After neutralisation with 10 mmol/L HCl, 15 mL of ethanol were added. Thereafter, 9.3 mg (0.025 mmol) of LaCl<sub>3</sub>·7H<sub>2</sub>O (Sigma-Aldrich, 99.9%) dissolved in 0.5 mL of water were injected into the aforementioned PTCDA solution. The [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4-</sup> IOH-NPs were separated by centrifugation (25.000 rpm, 15 min) and purified thrice by redispersion/centrifugation in/from an ethanol/water mixture (40:60). The IOH-NPs were resuspended in an ethanol/water mixture (40:60). Then, 2 mL of a Na<sub>2</sub>(HPO<sub>4</sub>)/Na(H<sub>2</sub>PO<sub>4</sub>) buffer solution (2.5 mmol/L) were slowly added via a syringe pump (4 mL/h). The suspension was stirred for additional 15 h. The IOH-NPs were separated by centrifugation (25.000 rpm, 15 min) and again redispersed in an ethanol/water mixture (40:60). After redispersion in the ethanol/water mixture (40 : 60), a solution of 0.5 mg (0.001 mmol) of LaCl<sub>3</sub>·7H<sub>2</sub>O in 1 mL of water was slowly added via a syringe pump (1 mL/h). After an additional hour of stirring, the suspension was heated up to 95 °C for 90 min. After cooling, the as-prepared [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4-</sup>@LaPO<sub>4</sub> IOH-NPs were separated by centrifugation (25.000 rpm, 15 min) and purified thrice by redispersing/centrifugating in/from water. Finally, aqueous suspensions or dried powder samples were obtained.

#### Characterization

The material properties of the  $[La(OH)]^{2+}_2[PTC]^4$  @LaPO<sub>4</sub> core-shell IOH-NPs is very similar to  $[La(OH)]^{2+}_2[PTC]^{4-}$ , except for the presence of absence of the LaPO<sub>4</sub> shell. Thus, DLS and SEM result in mean sizes of 68±10 nm and 63±9 nm, respectively (Figure S11a). Similar to  $[La(OH)]^{2+}_2[PTC]^{4-}$  IOH-NPs (*see main paper: Figure 4*), rod-shaped particles are also observed for La(OH)]^{2+}\_2[PTC]^{4-}@LaPO\_4 due to the  $\pi$ -stacking of the PTC anion (Figure S11d,e). The formation and presence of the LaPO<sub>4</sub> shell are indicated by the different zeta potentials of the raw La(OH)]^{2+}\_2[PTC]^{4-} IOH-NPs and the La(OH)]^{2+}\_2[PTC]^{4-}@LaPO\_4 IOH-NPs (Figure S11b). Similar to  $[La(OH)]^{2+}_2[PTC]^{4-}$  IOH-NPs (*see main paper: Figure 4*), aqueous suspensions of the La(OH)]^{2+}\_2[PTC]^{4-}@LaPO\_4 IOH-NPs are colloidally highly stable (Figure S11c).



**Figure S11.** Particle characterization of the [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4-</sup>@LaPO<sub>4</sub> IOH-NPs: (a) Particle size and particle size distribution according to DLS (in DEG) and SEM (statistical evaluation of 110 nanoparticles); (b) zeta potential analysis (including [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4-</sup> IOH-NPs); (c) photo of aqueous suspension; d+e) SEM images at different levels of magnification.

The emission of the  $[La(OH)]^{2+}_2[PTC]^4$  @LaPO<sub>4</sub> IOH-NPs upon dissolution is similar to  $[La(OH)]^{2+}_2[PTC]^4$  IOH-NPs (Figure S12; *see main paper: Figure 5*). Similarly, the excitation spectra of the  $[La(OH)]^{2+}_2[PTC]^4$  @LaPO<sub>4</sub> IOH-NPs are similar to  $[La(OH)]^{2+}_2[PTC]^4$  IOH-NPs and the freely dissolved PTC (Figure S13).



**Figure S12.** Emission of a)  $[La(OH)]^{2+}_{2}[PTC]^{4-}@LaPO_{4}$  IOH-NP suspensions (with photo) and of freely dissolved ICG and b)  $[La(OH)]^{2+}_{2}[PTC]^{4-}@LaPO_{4}$  IOH-NP suspensions and of freely dissolved PTC (with photo). All samples in distilled water; dissolution in 0.1 M phosphate solution; excitation of ICG at 781 nm and of PTC at 465 nm). Photos with blue-light-emitting LED for excitation.



**Figure S13.** Excitation spectra of the  $[La(OH)]^{2+}_2[PTC]^4$  @LaPO<sub>4</sub> IOH-NPs (aqueous suspension) with  $[La(OH)]^{2+}_2[PTC]^{4-}$  IOH-NPs (aqueous suspension) and aqueous solution of Na<sub>4</sub>(PTC) as references.

#### 6. In-vitro Studies

*Cell cultures.* The immortalized and adherent mouse alveolar macrophage cell line, MH-S (CRL-2019, ATCC) was cultivated at 37 °C in a humidified atmosphere of 5%  $CO_2$  in complete RPMI medium supplemented with 10% fetal calf serum (FCS) and 0.05 mM 2-mercaptoethanol.

Incubation with IOH-NPs. MH-S cells were plated on a 35 mm  $\mu$ -dish equipped with a polymer coverslip bottom (IBIDI), in a concentration of ~15.000 cells/cm<sup>2</sup> in 1 mL cell culture medium. Cells were allowed to attach overnight. On the next day, the macrophages were supplemented with 1 mL of medium, containing 50 µg/mL of the [La(OH)]<sup>2+</sup>[ICG]<sup>-</sup><sub>2</sub> and [La(OH)]<sup>2+</sup><sub>2</sub>[PTC]<sup>4-</sup> IOH-NPs.

*Microscopy and image analysis*. A Leica SP5 confocal laser-scanning microscope was used for imaging. Time-resolved imaging was performed after 30 min and 5 h of incubation with the IOH-NPs. Fluorescence micrographs of a living macrophages were recorded over 15 and 20 hours of incubation with the IOH-NPs.  $[La(OH)]^{2+}[ICG]^{-}_2$  IOH-NPs were excited at 633 nm and the emission recorded at 643-800 nm.  $[La(OH)]^{2+}_2[PTC]^{4-}$  IOH-NPs were excited at 514 nm and the emission recorded at 524-574 nm (*see main paper: Figure 7*). Confocal images were processed using ImageJ (available by ftp at *zippy.nimh.nih.gov* or at *http://rsb.info.nih.gov/nih-imageJ*, developed by W. Rasband, National Institutes of Health, U.S.).