Supporting information

"Carrier-drug" layer-by-layer hybrid assembly of biocompatible polydopamine nanoparticles to amplify photo-chemotherapy

Lingyu Lv^a, Hao Cheng^a, Zhen Wang^a, Zhangyi Miao^a, Feng Zhang^a, Jie Chen^a, Gang Wang^a, Ling Tao^b, Jianping Zhou^a, Huaqing Zhang^{a, *}, Yang Ding^{a, b, *}

^aState Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China ^bThe High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China

* Corresponding authors.

E-mail: Yang Ding, dydszyzf@163.com; Huaqing Zhang, zhanghq0527@163.com.

Fig. S1 Synthetic scheme for iRGD-apoA-I.

Fig. S2 SDS-PAGE analysis of apoA-I, iRGD-apoA-I, and marker, respectively.

Fig. S3 The size distribution measured by dynamic light scattering of ^{PL}iAPDA/DOX (A) and ^{SL}iAPDA/DOX (B) prepared with different iRGD-apoA-I (iA): PDA/DOX mass ratio and incubation with PBS for 24 h. Data were presented as mean \pm SD, n = 3. **P < 0.01, ****P < 0.0001.

Fig. S4 (A) The stabilization of ^{PL}PDA/DOX, ^{SL}PDA/DOX, ^{PL}iAPDA/DOX, and ^{SL}iAPDA/DOX suspended in PBS after incubation for 24 h. (B) The change in the particle sizes and polydispersity index of ^{PL}iAPDA/DOX and ^{SL}iAPDA/DOX during incubation in PBS (pH = 7.4) at 4 °C for 25 days, respectively. Data were presented as mean \pm SD, n = 3.

Fig. S5 XRD analysis (A) and DSC thermograms (B) of free DOX, PDA, ^{PL}iAPDA/DOX, and ^{SL}iAPDA/DOX.

Fig. S6 The photothermal capability of ^{PL}iAPDA/DOX (A) and ^{SL}iAPDA/DOX (B) at various NIR laser power (200 µg/mL of PDA), respectively.

Fig. S7 The photothermal capability of ^{PL}iAPDA/DOX (A) and ^{SL}iAPDA/DOX (B) at different PDA concentrations (2 W/cm²), respectively.

Fig. S8 Temperature changes of ^{SL}iAPDA/DOX under 808 nm NIR irradiation (2 W/cm²) for six cycles (10 min of irradiation for each cycle).

Fig. S9 Absorbance changes of ^{PL}iAPDA/DOX (A) and ^{SL}iAPDA/DOX (B) under 808 nm NIR irradiation (2 W/cm²) for six laser on/off cycles, respectively.

Fig. S10 Change ratios of 4T1 tumor spheroids volume (%) after applying various formulations and untreated control. Data were presented as mean \pm SD, n = 5; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Fig. S11 Accumulative release of DOX from $^{PL}iAPDA/DOX$ triggered by NIR irradiation (2 W/cm², 10 min), ROS (1 mM H₂O₂), and different pH values (5.0, 6.8) to

simulate the tumor microenvironment, respectively. Data were presented as mean \pm SD, n = 3.

Fig. S12 Number of pulmonary metastatic nodules of 4T1 tumor-bearing mice after various treatments indicated. Data were presented as mean \pm SD, n = 5; ****P < 0.0001.

Fig. S13 Biochemical studies including heart functions (CK, LDH), liver functions (ALP, ALT), and renal functions (CRE, BUN) in healthy mice treated with various treatments (1, saline; 2, saline with irradiation; 3, free DOX; 4, ^{PL}iAPDA/DOX; 5, ^{PL}iAPDA/DOX with irradiation). Dose of DOX: 1.5 mg/kg; irradiation: 808 nm at 2 W/cm² for 10 min. Data were presented as mean \pm SD, n = 5; *P < 0.05. **P < 0.01.

Fig. S14 H&E histopathological sections of tissues excised from mice in the study groups. Scale bar = $100 \ \mu m$.

n=5.						
	Diameter		Zeta potential			
	(nm)	PDI	(mV)	EE (%)	DL (%)	
PDA	84.54 ± 0.79	0.18 ± 0.03	-21.05 ± 0.60			
PLPDA/	107.70 ± 2.73	0.25 ± 0.01	16.20 ± 1.08	79.71 ± 2.29	70.51 ± 0.59	
DOX	10,1,0 - 2,75	0.20 - 0.01	10.20 - 1.00	, , , , <u>,</u> <u>,</u> <u>,</u> <u>,</u> <u>,</u> <u>,</u> <u>,</u> <u>,</u>	, 0.01 - 0.09	
^{SL} PDA/	105.32 ± 2.14	0.15 ± 0.04	7.02 ± 1.01	24 30 + 3 13	42 23 + 1 11	
DOX	103.32 ± 2.14	0.13 ± 0.04	7.92 ± 1.01	27.37 ± 3.13	7 2.23 ± 1.11	
PLiAPDA	123 80 + 1 87	0 19 + 0 04	-29 31 + 4 04	79 71 + 2 29	57.79 ± 0.48	
/DOX	125.00 ± 1.07	0.17 ± 0.04	27.31 ± 4.04	19.11 ± 2.29	57.77 ± 0.40	
^{SL} iAPDA	119 10 + 0 65	0.18 ± 0.03	-35 17 + 6 02	24 39 + 3 13	34 91 + 0 91	
/DOX	117.10 ± 0.00	0.10 ± 0.00	55.17 ± 0.02	2π. <i>37</i> ± 3.13	57.71 ± 0.71	

Table S1 Characterization of different formulations, including PDA, ^{PL}PDA/DOX, ^{SL}PDA/DOX, ^{PL}iAPDA/DOX, and ^{SL}iAPDA/DOX. Data were presented as mean \pm SD, n = 3

Table S2 Grafting rate of iRGD-apoA-I to PDA nanoparticles in different formulations. Data were presented as mean \pm SD, n = 3.

Mass ratio (iA:PDA/DOX)	^{pl} iAPDA/DOX	^{SL} iAPDA/DOX	
0.1:1	(8.49 ± 0.27) %	(8.39 ± 0.30) %	
0.15:1	(12.28 ± 0.15) %	(12.17 ± 0.19) %	
0.25:1	(18.03 ± 0.27) %	(17.33 ± 0.29) %	
0.35:1	$(18.26\pm 0.31)\%$	(17.53 ± 0.72) %	

	1				
	iAPDA	Free	PLAPDA/	^{pl} iAPDA/	PLiAPDA/DOX
	+NIR	DOX	DOX	DOX	+NIR
IC ₅₀ (μg/mL)	46.68	1.53	1.28	0.95	0.61

Table S3 IC₅₀ of iAPDA + NIR, Free DOX, $^{PL}APDA/DOX$, $^{PL}APDA/DOX$, $^{PL}iAPDA/DOX$, and $^{PL}iAPDA/DOX + NIR$.