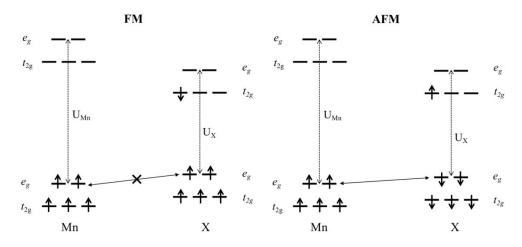
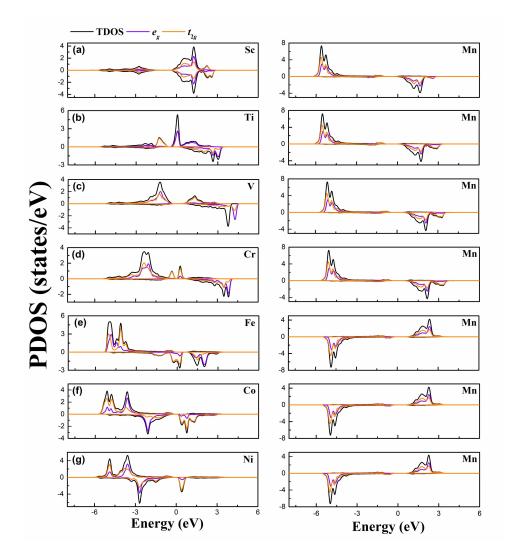
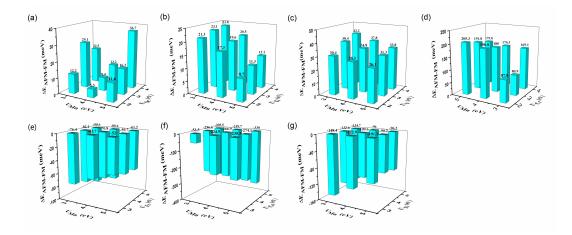
Supplemental Material

A generic dual *d*-band model for interlayer ferromagnetic coupling in transition-metal doped MnBi₂Te₄ family of materials

Huisheng Zhang,^{*}a Jingjing Zhang,^a Yaling Zhang,^a Wenjia Yang,^a Yingying Wang,^a Xiaohong Xu,^{*}a and Feng Liu^{*}^b

^a College of Physics and Electronic Information & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & Research Institute of Materials Science, Shanxi Normal University, Taiyuan, 030031, China ^b Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States

Email: hszhang@sxnu.edu.cn, xuxh@sxnu.edu.cn,fliu@eng.utah.edu

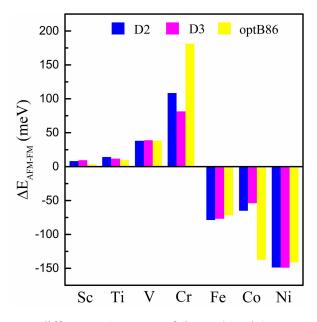

Fig. S1 Schematic diagrams of ferromagnetic (FM) and antiferromagnetic (AFM) coupling in electron-type (namely, Fe, Co, Ni) transition metal doped $MnBi_2Te_4$ (MBT). They illustrate there is no spin channel open for Mn *d*-electron hopping with low energy without spin flipping, so that AFM coupling remains favored.

Fig. S2 Calculated partial density of states (PDOS) of Sc (a), Ti (b), V (c), Cr (d), Fe (e), Co, (f) and Ni (g)-doped MnBi₂Te₄. For comparison, the PDOS of Mn is also given for each system. Fermi levels are set to zero.

Fig. S3 Calculated energy difference ΔE_{AFM-FM} of the Sc (a), Ti (b), V (c), Cr (d), Fe (e), Co, (f) and Ni (g)-doped Mn₂Bi₂Te₅ monolayers with different effective U parameters.

Fig. S4 Calculated energy difference ΔE_{AFM-FM} of the X-doped (X = Sc, Ti, V, Cr, Fe, Co, or Ni) Mn₂Bi₂Te₅ monolayers by using vdW correction of DFT-D2, DFT-D3, and opbB86, respectively.

	Magnetic configurations				
	AFM			FM	
	$\stackrel{\uparrow}{\rightarrow} \stackrel{\downarrow}{\rightarrow}$	↑ ↓ ↑	$\uparrow \\ \downarrow \\ \downarrow$	↑ ↑ ↑	
$E_{\mathrm{MnScBi}_{2}\mathrm{Te}_{5}}(\mathrm{eV})$	-83.911	-83.910	-83.914	-83.916	
$E_{MnTiBi_2Te_5}(eV)$	-84.406	-84.407	-84.423	-84.429	
$E_{MnVBi_2Te_5}(eV)$	-85.721	-85.723	-85.791	-85.799	
$E_{\mathrm{MnCrBi}_{2}\mathrm{Te}_{5}}(\mathrm{eV})$	-86.600	-86.599	-86.940	-86.951	

Fig. S5 Total energies of MnScBi₂Te₅, MnTiBi₂Te₅, MnVBi₂Te₅, and MnCrBi₂Te₅ bilayers for three types of antiferromagnetic (AFM) and one type ferromagnetic (FM) orders.

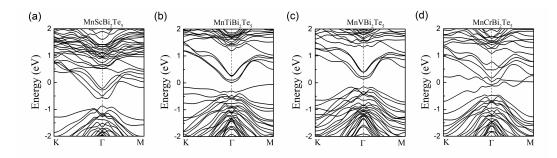
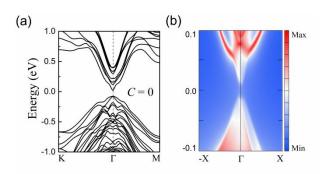
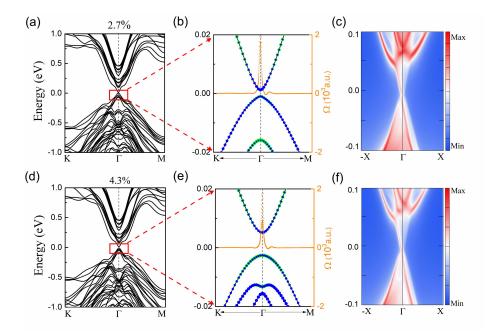




Fig. S6 The electronic band structures of $MnScBi_2Te_5$ (a), $MnTiBi_2Te_5$ (b), $MnVBi_2Te_5$ (c), and $MnCrBi_2Te_5$ (d) including spin-orbit coupling, respectively.

Fig. S7 (a) The electronic band structures of $MnVBi_2Te_5$ bilayer, where the calculated Chern number *C* is 0. (b) The corresponding bands showing no edge state.

Fig. S8 (a) Electronic band structures of $MnVBi_2Te_5$ trilayer by applying 2.7% biaxial tensile strain. (b) Magnified bands near Fermi level in (a), where projected bands of $Bi-p_z$ and $Te-p_z$ orbitals are also given. (c) The corresponding edge states. (d)-(f) The same as (a)-(c) for $MnVBi_2Te_5$ trilayer with 4.3% biaxial tensile strain. Fermi levels are set to zero.

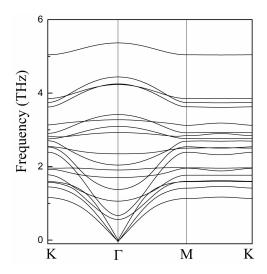
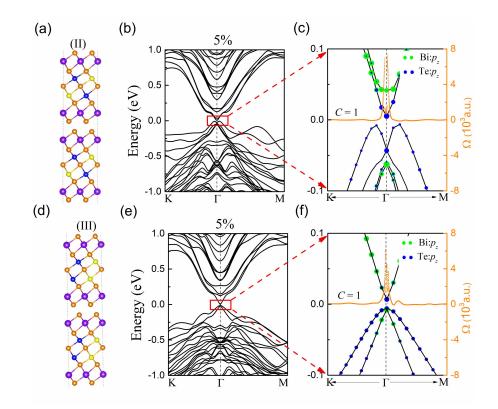



Fig. S9 Calculated phonon spectra of $MnVBi_2Te_5$ monolayer.

(a)	r	I	1	
()	Structual configurations			
	$E_{\rm FM} ({\rm eV})\uparrow\uparrow\downarrow\downarrow$	-85.425206	-85.409106	-85.487828
	$E_{\rm AFM}({ m eV})\uparrow\uparrow\downarrow\downarrow$	-85.388309	-85.479983	-85.406927
(b)				
	Structual configurations			
	$E_{\rm FM} ({ m eV}) \uparrow \uparrow \uparrow \uparrow$	-85.799402	-85.796374	-85.790626
	$E_{ m AFM}$ (eV) $\uparrow\uparrow\downarrow\downarrow$	-85.798253	-85.796558	-85.792183
	$E_{ m AFM}$ (eV) $\uparrow \downarrow \uparrow \downarrow$	-85.721508	-85.720240	-85.725749
	$E_{ m AFM}$ (eV) $\uparrow \downarrow \downarrow \uparrow$	-85.723198	-85.719410	-85.723668

Fig. S10 (a) Total energies of FM and AFM $MnVBi_2Te_5$ monolayer in a 2 × 1 ×1 supercell. (b) The same as (a) for $MnVBi_2Te_5$ bilayer. The black arrows denote the directions of magnetic moments of V or Mn.

Fig. S11 (a) Structural configuration (II) of MnVBi₂Te₅ bilayer in Fig. S10. (b) Corresponding electronic band structure by applying 5.0% biaxial tensile strain. (c) Magnified bands near Fermi level in (b), where projected bands of Bi- p_z and Te- p_z orbitals are also given. (d)-(f) The same as (a)-(c) for structural configuration (III) of MnVBi₂Te₅ bilayer in Fig. S10. Fermi levels are set to zero.

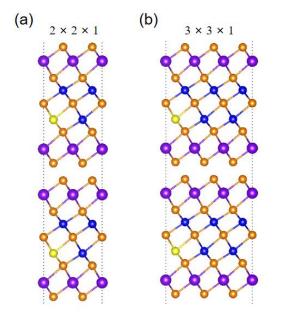


Fig. S12 The crystal structures of V-doped M_2BT with the 25% (a) and 11.1% (b) doping concentration, respectively.