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Fig. S1 Schematic diagrams of ferromagnetic (FM) and antiferromagnetic (AFM) coupling in
electron-type (namely, Fe, Co, Ni) transition metal doped MnBi2Te4 (MBT). They illustrate
there is no spin channel open for Mn d-electron hopping with low energy without spin
flipping, so that AFM coupling remains favored.
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Fig. S2 Calculated partial density of states (PDOS) of Sc (a), Ti (b), V (c), Cr (d), Fe (e), Co,
(f) and Ni (g)-doped MnBi2Te4. For comparison, the PDOS of Mn is also given for each system.
Fermi levels are set to zero.
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Fig. S3 Calculated energy difference ΔEAFM-FM of the Sc (a), Ti (b), V (c), Cr (d), Fe (e), Co,
(f) and Ni (g)-doped Mn2Bi2Te5 monolayers with different effective U parameters.
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Fig. S4 Calculated energy difference ΔEAFM-FM of the X-doped (X = Sc, Ti, V, Cr, Fe, Co, or
Ni) Mn2Bi2Te5 monolayers by using vdW correction of DFT-D2, DFT-D3, and opbB86,
respectively.
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Fig. S5 Total energies of MnScBi2Te5, MnTiBi2Te5, MnVBi2Te5, and MnCrBi2Te5 bilayers for
three types of antiferromagnetic (AFM) and one type ferromagnetic (FM) orders.
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Fig. S6 The electronic band structures of MnScBi2Te5 (a), MnTiBi2Te5 (b), MnVBi2Te5 (c),
and MnCrBi2Te5 (d) including spin-orbit coupling, respectively.
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Fig. S7 (a) The electronic band structures of MnVBi2Te5 bilayer, where the calculated Chern
number C is 0. (b) The corresponding bands showing no edge state.
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Fig. S8 (a) Electronic band structures of MnVBi2Te5 trilayer by applying 2.7% biaxial tensile
strain. (b) Magnified bands near Fermi level in (a), where projected bands of Bi-pz and Te-pz
orbitals are also given. (c) The corresponding edge states. (d)-(f) The same as (a)-(c) for
MnVBi2Te5 trilayer with 4.3% biaxial tensile strain. Fermi levels are set to zero.
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Fig. S9 Calculated phonon spectra of MnVBi2Te5 monolayer.
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Fig. S10 (a) Total energies of FM and AFM MnVBi2Te5 monolayer in a 2 × 1 ×1 supercell. (b)
The same as (a) for MnVBi2Te5 bilayer. The black arrows denote the directions of magnetic
moments of V or Mn.



12

Fig. S11 (a) Structural configuration (II) of MnVBi2Te5 bilayer in Fig. S10. (b) Corresponding
electronic band structure by applying 5.0% biaxial tensile strain. (c) Magnified bands near
Fermi level in (b), where projected bands of Bi-pz and Te-pz orbitals are also given. (d)-(f) The
same as (a)-(c) for structural configuration (III) of MnVBi2Te5 bilayer in Fig. S10. Fermi
levels are set to zero.
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Fig. S12 The crystal structures of V-doped M2BT with the 25% (a) and 11.1% (b) doping
concentration, respectively.
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