Supporting Information

Optically active polymer particles with programmable surface microstructures constructed by chiral helical polyacetylene

Hai Zhong, Hongfang Yang, Jiaqi Shang, Biao Zhao and Jianping Deng*

State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

*Corresponding Author

Jianping Deng; E-mail: dengjp@mail.buct.edu.cn

	N [%]	C [%]	H [%]
PGMA seeds	0.01	58.89	7.2
JTPs	0.01	58.61	7.24
Alkynyl-JTPs	4.16	57.43	7.48
S-JPs	4.26	59.9	7.37

Table S1. The elemental analysis data for PGMA seeds, JTPs, alkynyl-JTPs and S-JPs.

The content of PolySM in S-JPs can be determined based on the N content.

Content of PolySM (wt%) = $(N_{S-JPs}\% - N_{Alkynyl-JTPs}\%)/(N_M\% - N_{Alkynyl-JTPs}\%) = 3 \text{ wt}\%$

Table S2. The elemental analysis data for PGMA seeds, GTPs, alkynyl-GTPs and S-GPs.

	N [%]	C [%]	H [%]
PGMA seeds	0.01	58.89	7.2
GTPs	0.01	61.17	7.26
Alkynyl-GTPs	3.64	61.03	7.42
S-GPs	4.1	60.92	7.52

The content of PolySM in S-GPs can be determined based on the N content.

Content of PolySM (wt%) = $(N_{S-GPs}\% - N_{Alkynyl-GTPs}\%)/(N_M\% - N_{Alkynyl-GTPs}\%) = 11.9 \text{ wt}\%$

Table S3. The elemental analysis data for PGMA seeds, RTPs, alkynyl-RTPs and S-RPs.

	N [%]	C [%]	H [%]
PGMA seeds	0.01	58.59	7.2
RTPs	0.01	80.43	7.64
Alkynyl-RTPs	1.48	78.83	7.88
S-RPs	2.22	78.48	7.63

The content of PolySM in S-RPs can be determined based on the N content.

Content of PolySM (wt%) = $(N_{S-RPs}\% - N_{Alkynyl-RTPs}\%)/(N_M\% - N_{Alkynyl-RTPs}\%) = 12.3 \text{ wt}\%$

Figure S1. SEM image of PGMA seed particles.

Figure S2. DLS size distribution of JTPs, GTPs, and RTPs.

Figure S3. Typical FT-IR spectra of (A) PGMA seed particles, GTPs, alkynyl-GTPs, and *S*-GPs; (B) PGMA seed particles, RTPs, alkynyl-RTPs, and *S*-RPs.

Figure S4. XPS spectra recorded on the surface of (A) GTPs, alkynyl-GTPs, and *S*-GPs; (B) RTPs, alkynyl-RTPs, and *S*-RPs.

Figure S5. TGA curves of (A) GTPs, alkynyl-GTPs, and *S*-GPs; (B) RTPs, alkynyl-RTPs, and *S*-RPs.

Figure S6. CD (A) and UV-vis absorption (B) spectra of Poly*R*M and Poly*S*M in CHCl₃ solution (c = 0.17 mM, by the M unit).

Figure S7. CD (A and C) and UV-vis absorption (B and D) spectra of JTPs, GTPs, RTPs, alkynyl-JTPs, alkynyl-GTPs and alkynyl-RTPs. Samples were tested by dispersing them in CHCl₃ solution (A and B) and in KBr tablet form (C and D) at room temperature.