Tryptophan Self-assembly Yields Cytotoxic Nanofibers

Containing Amyloid-Mimicking and Cross-Seeding Competent

Conformers

Kailash Prasad Prajapati^{a†}, Bibin Gnanadhason Anand^{a†}, Masihuzzaman Ansari^a, Ashu Bhan Tiku^a, Karunakar Kar ^{a*}

Author affiliations:

^a Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.

* Corresponding author: Karunakar Kar; School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India; Phone: +91-1126704517; email: *karunakarkar@gmail.com* and *kkar@mail.jnu.ac.in*

Table S1. List of different pathological conditions linked to the fluctuation in *Trp* level in body.

Pathological complications	Tryptophan level	References
Dizziness, nausea, and the illusion of movement in controls to levels that approached those of migraineurs	Decrease Trp in plasma	(Drummond, 2005)
Atherosclerosis	Decrease Trp in serum	(Baldo-Enzi et al., 1996)
Inhibition of indoleamine 2,3-	High Trp	(Ruan et al., 2014)
dioxygenase (IDO-1) an Trp catabolising enzyme leads to Atherosclerosis		
Alzheimer's disease (AD)	Decrease Trp in plasma	(Porter, Marshall and O'Brien, 2002; Greilberger et al., 2010)
Irritable bowel syndrome (IBD)	Decrease Trp in plasma	(Fitzgerald et al., 2008; Nikolaus et al., 2017; Kałużna-Czaplińska et al., 2019)
Obesity	Decrease Trp in plasma/serum	(Harald Mangge et al., 2014; Strasser, Berger and Fuchs, 2015)
Type 2 Diabetes (T2D)	Increase plasma Trp level	(Oxenkrug, 2015; Chen et al., 2016)
Overweight individuals with bipolar disorder	Decrease Trp level in serum	(Reininghaus et al., 2014)
Anorexia Nervosa	Decrease Trp in CSF and plasma	(Kaye et al., 1988; Gauthier et al., 2014)
Bulimia Nervosa	Increased Trp in plasma	(Kaye et al., 2000)
Autism	Decrease Trp in plasma	(Adams et al., 2011; Naushad et al., 2013)
Parkinson's Disease	Low Trp in CSF	(Widner, Leblhuber and Fuchs, 2002; Naushad et al., 2013)
Sleep Deprivation	Increased Trp in plasma	(Davies et al., 2014)
Fluoxetine treatment	Increase Trp in Brain	(Bano and Sherkheli, 2003)
Oral Trp load	Increase plasma Trp	(Green et al., 1980)
HIV patient	Decrease serum Trp	(Fuchs et al., 1990)
liver cirrhosis/Hepatic coma	Increase Brain/plasma TRP	(Ono et al., 1978; Laviano et al., 1997; Dejong et al., 2007)
Cardiovascular Disease	Decrease Trp in plasma	(H Mangge et al., 2014)
Melanoma	Decrease Trp in plasma	(Weinlich et al., 2007)
Lymphoma	Decrease Trp in plasma	(Suzuki et al., 2010)
Lung cancer	Decrease Trp in plasma	(Engin et al., 2010; Chuang et al., 2014)
Gynecological cancer	Decrease Trp in plasma	(Schroecksnadel et al., 2005)
Gastrointestinal tumors	Decrease Trp in plasma	(Iwagaki et al., 1995)
Colorectal cancer	Serum tryptophan decrease	(Huang et al., 2002)
Breast cancer	Serum tryptophan decrease	(Eniu et al., 2019)
Phenylketonuria (PKU)	Decrease Trp level	(Lou et al., 1985; Smith and Kang, 2000)
Chronic Fatigue Syndrome (CFS) and	Decrease Trp in plasma	(Werbach, 2000; Blankfield, 2012)
7 Juniorityalgia (FIVI)	Decrease Trn in plasma	(Taffe et al. 2003)
(MDMA) treatment	Decrease 11p III plasifid	
Aggressive Behaviour	Decrease Trp in plasma	(Marsh et al., 2002)
Acute Ethanol Consumption	Decrease Trp in plasma	(Badawy et al., 1995)

Figure S1. Analysis of the rate of Tryptophan aggregation in a dosedependent manner. *a*, Thioflavin-T data showing dose dependent aggregation of Trp at different concentrations, as labelled. *b*, linear fit of initial time points of *Trp* at 1 mM; *c*, linear fit of initial time points of *Trp* at 2 mM; *d*, linear fit of initial time points of *Trp* at 4 mM; *e*, linear fit of initial time points of *Trp* at 8 mM. *f*, Plot showing rate of aggregation vs Trp concentration

Figure S2. Analysis of the rate of self-seeded aggregation of Trp in dosedependent manner. *a*, Thioflavin-T data showing self seeded aggregation as labelled. *b*, linear fit of initial time points of the control aggregation reaction. *c*, linear fit of initial time points of the aggregation reaction at 5 % w/w seed of *Trp. d*, linear fit of initial time points of the aggregation reaction at 10 % w/w seed of *Trp. e*, linear fit of initial time points of the aggregation reaction at 20 % w/w seed of *Trp. f*, Plot showing the increasing rate of Trp aggregation with increasing seed concentration, as labelled.

а		Interacting Residues	Bond length	Type of Interaction
•.		TRP 39 - TRP 53	/ 897918	Pi-Pi T-shaned
	TRP 53	TRP 39 - TRP 47	4.745665	Pi-Pi T-shaped
	TRP 39	TRP 39 - TRP 47	4 570283	Pi-Pi T-shaped
	TRP 49 TRP 33	TRP 39 – TRP 49	4.863880	Pi-Pi Stacked
		TRP 39 - TRP 49	4 286618	Pi-Pi Stacked
		TRP 39·H24 - TRP 55	3 274510	Pi-Donor Hydrogen Bond
		TRP 55-H19 - TRP 39-01	2 661495	Carbon Hydrogen Bond
		TRP 55:H20 – TRP 39:O2	2.993630	Hydrogen Bond
	TRP 47	TRP 39:H27 – TRP 33:O1	2.012124	Hydrogen Bond
		TRP 33:H18 – TRP 39:O2	2.344062	Carbon Hydrogen Bond
	TRP 1	TRP 33:H19 – TRP 39:O2	2.266506	Carbon Hydrogen Bond
b	0	Interacting Residues	Bond length	Type of Interaction
~		TRP 40 – TRP 78	5.150412	Pi-Pi T-shaped
		TRP 78 – TRP 40	5.234781	Pi-Pi T-shaped
		TRP 40 – TRP 78	5.172656	Pi-Pi T-shaped
		TRP 40 - TRP 45	4.940692	Pi-Pi T-shaped
		TRP 45 - TRP 40	5.529468	Pi-Pi T-shaped
	S Matrix 5 6 0.			
	F			
~ [
C		Interacting Residues	Bond length	Type of Interaction
			1 820516	Uudragan Dand
	ž z z z z z z z z z z z z z z z z z z z	TRP 0:025 - TRP 32:01	1.830516	пуагоден вона
	4 ⁶	TRP 32:H20 – TRP 26:O2	2.495262	Hydrogen Bond
	0			
d	TRP 44			
		Interacting Residues	Bond length	Type of Interaction
	TRP 80	TRP16:H27 - B:TRP89:O2	2.628218	Hydrogen Bond
		TRP44:H20 - B:TRP16:O2	2.365137	Hydrogen Bond
		TRP16·H20 - B·TRP80·O2	1 997695	Hydrogen Bond
		111 10.1120 - 0.111 00.02	1.557055	nyurogen bonu
	TRP 16			
~ [<u></u>			
C	TRP 59			
	TRP 32	Interacting Residues	Bond length	Type of Interaction
		TRP6:H25 -B:TRP32:O1	1.830516	Hydrogen Bond
		TRP59:H20-	1.944634	Hydrogen Bond
	8	B:TRP6:O2		
	TRP 6			

Figure S3. Molecular Dynamic simulation reveals formation of *Trp* nanostructure facilitated by non-covalent interactions. *a-e*, Snapshots of selected portions taken from the simulated *Trp*-nanostructure revealing the intermolecular association between *Trp* molecules via strong non- covalent interactions including H-bonds and $\pi-\pi$ interactions between optimally oriented *Trp* molecules, as labelled.

Figure S4. Analysis of the rate of Tryptophan-seeded insulin aggregation at different seed concentrations. *a*, Thioflavin-T data showing aggregation of insulin in the presence of different doses of preformed *Trp* seeds, as labelled. *b*, linear fit of initial time points of insulin aggregation at 5% (w/w) *Trp* seed. *c*, linear fit of initial time points of insulin aggregation at 10% (w/w) *Trp* seed. *d*, linear fit of initial time points of insulin aggregation at 20% (w/w) *Trp* seed.

Figure S5. Analysis of the rate of Trp-seeded coaggregation a protein mixture in a dose-dependent manner. *a*, Thioflavin-T data showing coaggregation of different globular proteins in the presence of different doses of *Trp*-seeds, as labelled. *b*, linear fit of initial time points of the coaggregation reaction at 5 % w/w seed of *Trp. c*, linear fit of initial time points of the coaggregation reaction at 10 % w/w seed of *Trp. d*, linear fit of initial time points of the coaggregation reaction at 20 % w/w seed of *Trp.*

Figure S6. Analysis of the rate of aggregation of β -lactoglobulin and cytochrome c in the prdopamine in the presence of Trp-nanostructures. *a*, linear fit of initial time points of the control aggregation reaction of β -lactoglobulin. *b*, linear fit of initial time points of the aggregation reaction of β -lactoglobulin in the presence of 10 % (w/w) *Trp* seeds. *c*, linear fit of initial time points of the aggregation reaction of cytochrome c at 10 % w/w seed of *Trp. c*, linear fit of initial time points of the aggregation reaction of cytochrome c at 20 % w/w seed of *Trp.*

<i>Trp</i> nanostr	ucture –	Insulin	<i>Trp</i> nanostri	ucture – Lys
			b	
			Interacting residue	Bond
			interacting residue	length (Å
	20 × 40		B:TRP73:N4 - A:GLU35:OE1	2.8
•••• •••• <u>•</u> ••	1-12 M	· · ·	B:TRP10:02 - A:THR43:OG1	3.1
			B:TRP70:02 - A:ASN44:ND2	2.8
Interacting residue	Bond	Type of interaction	B:TRP40:O2 - A:THR47:OG1	2.6
	length (Å)	B:TRP45:N3 - A:THR47:OG1	2.8
C:TRP7:O1 - B:TYR26:OH	2.6	Hydrogen Bond	B:TRP94:N3 - A:SER81:OG	3.0
C:TRP26:O1 - B:PHE24:O	3.0	Hydrogen Bond	B:TRP18:O2 - A:ASN103:ND2	3.0
C:TRP42:O1 - A:GLU17:OE1	2.3	Hydrogen Bond	B:TRP70:C10 - A:ASN44:OD1	2.6
C:TRP63:O1 - B:TYR16:OH	3.0	Hydrogen Bond	B:TRP28:O2 - A:TRP63	3.5
C:TRP26:N4 - A:ASN21:ND2	3.2	Hydrogen Bond	B:TRP94 - A:SER81:OG	3.7
C:TRP77:O1 - B:PHE24:N	3.2	Hydrogen Bond	B:TRP31 - A:ILE98:CG2	3.2
C:TRP7:O2 - B:TYR26:OH	2.9	Hydrogen Bond	B:TRP31 - A:ALA107	3.3
C:TRP26:C8 - B:PHE24:O	3.1	Hydrogen Bond	B:TRP73 - A:VAL109	4.3
C:TRP82:C10 - A:GLU17:O	3.7	Hydrogen Bond	B:TRP76 - A:ALA42	4.3
C:TRP77:O1 - B:GLY23:CA	3.0	Hydrogen Bond	B:TRP83 - A:LEU84	5.4
C:TRP34 - A:GLY1:N	3.0	Hydrogen Bond	B:TRP83 - A:LEU84	5.0
C:TRP34 - A:GLU4:OE1	4.6	Pi-Anion	B:TRP93 - A:PRO79	4.6
C:TRP34 - A:GLU4:OE1	4.6	Pi-Anion	B:TRP93 - A:PRO79	4.3
C:TRP32 - B:THR27:CG2	3.3	Pi-Sigma	B:TRP94 - A:PRO79	4.8
C:TRP32 - B:PHE25	5.3	Pi-Pi Stacked	B:TRP94 - A:ALA82	4.2
C:TRP11 - B:LYS29	4.5	Pi-Alkyl	B:TRP31 - A:TRP108	5.1
C:TRP60 - B:PRO28	4.7	Pi-Alkyl	B-TRP31 - A-TRP108	5.2

rp nanostructure – Lysozyme

Type of interaction Hydrogen Bond Pi-Sigma Pi-Alkyl Pi-Alkyl

Figure S7 Rigid body Z-Docking analysis reveals direct interaction between *Trp***-nanostructure with globular proteins.** *a*, Insulin (PDB ID: 3I3Z) and *Trp*-nanostructure. *b*, Lysozyme (PDB ID: 5WRA) and *Trp*-nanostructure.

<i>Trp</i> nanostructure and cvt c			Trp nanostructure and β -lactoglobulin				
a				b			
	Interacting residue	Bond length (Å) 2 6	Type of interaction				
	B:TRP29:N4 - A:THR58:0	2.0	Hydrogen Bond				
	B-TRP41:01 - A-THR40:0	3.0	Hydrogen Bond				
	B:TRP93:N4 - A:TRP59:NE1	2.3	Hydrogen Bond		Interacting residue	Bond	Type o
	B:TRP29:O1 - A:LYS60:NZ	2.8	Hydrogen Bond			length (Å)	intera
	B:TRP96:O1 - A:LYS79:NZ	3.3	Hydrogen Bond		B·TRP61·O1	2.8	Hydro
	B:TRP52:N4 - A:ALA83:N	3.0	Hydrogen Bond			2.0	Tryuro
	B:TRP93:C8 - A:ASN52:OD1	3.5	Hydrogen Bond		A:GLN155:NE2		
	B:TRP93:C10 - A:ASN52:OD1	2.7	Hydrogen Bond		B:TRP69 - A:ALA34:CB	3.4	Pi-Sign
	B:TRP96:C8 - A:THR47:OG1	2.4	Hydrogen Bond		B:TRP14 - A:ILE162:CD1	3.7	Pi-Sign
	B:TRP96:O1 - A:THR47:CB	3.0	Hydrogen Bond		B:TRP67 - A:PHE151	4.5	Pi-Pi T-
	B:TRP92:O2 - A:LYS53:CE	2.4	Hydrogen Bond		B:TRP67 - A:PHE151	4.2	Pi-Pi T-
	B:TRP29:N4 - A:LYS60:CE	2.4	Hydrogen Bond		B:TRP61 - A:II F162	5 1	Alkvl
	B:TRP83:02 - A:MET80:CA	3.3	Hydrogen Bond			2 5	
	B:TRP41:N3 - A:TYR48	4.9	PI-Cation Di Di Stackod		D.TRP14 - A.ILE102	5.5	
	B.TRP83 - A.FRE62	4.Z	Alkyl		B:1RP19 - A:ALA34	5.3	РІ-АІКУ
	B-TRP94 - A-CVS14	5.0	Alkyl		B:TRP47 - A:ILE29	4.5	Pi-Alky
	B-TRP52 - A-II F81	4.9	Pi-Alkyl		B:TRP49 - A:ILE29	5.4	Pi-Alky
	B:TRP63 - A:PRO44	4.7	Pi-Alkyl		B:TRP49 - A:ILE29	4.4	Pi-Alky
	B:TRP63 - A:PRO44	3.7	Pi-Alkyl		B:TRP61 - A:ILE162	5.0	Pi-Alky
	B:TRP83 - A:CYS14	5.2	Pi-Alkyl		B-TRD67 - A-I FI 11/0	4.7	
	B:TRP83 - A:CYS17	4.6	, Pi-Alkyl		D.TRFO7 - A.LEU143	4.7	
	B:TRP93 - A:PRO30	3.5	Pi-Alkyl		B:1KP69 - A:ALA34	4.4	PI-AIKy
	B:TRP93 - A:LEU32	5.0	Pi-Alkyl		B:TRP70 - A:ILE162	5.4	Pi-Alky
	A·PHE82 - B·TRP83	4.6	Pi-Alkyl		B:TRP61 - A:TRP61	4.3	Pi-Alkv

Bond esidue Type of length (Å) interaction Hydrogen Bond 2.8 E2 ALA34:CB 3.4 Pi-Sigma Pi-Sigma ILE162:CD1 3.7 Pi-Pi T-shaped PHE151 4.5 PHE151 4.2 Pi-Pi T-shaped Alkyl ILE162 5.1 Pi-Alkyl ILE162 3.5 ALA34 Pi-Alkyl 5.3 ILE29 4.5 Pi-Alkyl ILE29 5.4 Pi-Alkyl ILE29 4.4 Pi-Alkyl ILE162 Pi-Alkyl 5.0 LEU149 4.7 Pi-Alkyl ALA34 4.4 Pi-Alkyl Pi-Alkyl ILE162 5.4 TRP61 4.3 Pi-Alkyl

Figure S8 Rigid body Z-Docking analysis reveals direct interaction between Trp-nanostructure with globular proteins. *a*, Cytochrome c (PDB ID: 1HRC) and Trp-nanostructure. *b*, β-lactoglobulin (PDB ID: 5105) and Trp-nanostructure.

Figure S9. Analysis of the *Phe* 25 and *Phe* 24 of insulin's B-chain before and after docking reveals formation of three additional H-bonds after the complex formation with *Trp*-nanostructure, as labelled.

Figure S10 Sequence analysis of proteins using PASTA 2.0: (blue curve) degree of disorderedness; (magenta curve) Aggregation probability of the protein. Yellow shaded region displays the amino acids (\bullet) which interact with the *Trp* nanostructure and the type of non-covalent contacts. *a*, Cytochrome c ; *b*, β -lactoglobulin; *c*, Lysozyme. Inset pi-chat (shown in a-c) reveals major contribution of both electrostatic and hydrophobic residues for a viable interaction between the respective proteins and *Trp* nanostructure.

Figure S11 UV-visible absorption data for Trp sample before and after aggregation, as labelled.

Adams, J. B. *et al.* (2011) 'Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity.', *Nutrition & metabolism*, 8(1), p. 34. doi: 10.1186/1743-7075-8-34.

Badawy, A. A. *et al.* (1995) 'Decrease in circulating tryptophan availability to the brain after acute ethanol consumption by normal volunteers: implications for alcohol-induced aggressive behaviour and depression.', *Pharmacopsychiatry*, 28 Suppl 2, pp. 93–97. doi: 10.1055/s-2007-979626.

Baldo-Enzi, G. *et al.* (1996) 'Tryptophan and atherosclerosis.', *Advances in experimental medicine and biology*, 398, pp. 429–432. doi: 10.1007/978-1-4613-0381-7_67.

Bano, S. and Sherkheli, M. A. (2003) 'Inhibition of tryptophan - pyrrolase activity and elevation of brain tryptophan concentration by fluoxetine in rats.', *Journal of the College of Physicians and Surgeons--Pakistan : JCPSP*, 13(1), pp. 5–10.

Blankfield, A. (2012) 'A Brief Historic Overview of Clinical Disorders Associated with Tryptophan: The Relevance to Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM).', *International journal of tryptophan research : IJTR*, 5, pp. 27–32. doi: 10.4137/IJTR.S10085.

Chen, T. *et al.* (2016) 'Tryptophan Predicts the Risk for Future Type 2 Diabetes', *PLoS One*. 20160906th edn, 11(9), p. e0162192. doi: 10.1371/journal.pone.0162192.

Chuang, S.-C. *et al.* (2014) 'Circulating biomarkers of tryptophan and the kynurenine pathway and lung cancer risk.', *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology*, 23(3), pp. 461–468. doi: 10.1158/1055-9965.EPI-13-0770.

Davies, S. K. *et al.* (2014) 'Effect of sleep deprivation on the human metabolome.', *Proceedings of the National Academy of Sciences of the United States of America*, 111(29), pp. 10761–10766. doi: 10.1073/pnas.1402663111.

Dejong, C. H. C. *et al.* (2007) 'Aromatic amino acid metabolism during liver failure.', *The Journal of nutrition*, 137(6 Suppl 1), pp. 1579S-1585S; discussion 1597S-1598S. doi: 10.1093/jn/137.6.1579S.

Drummond, P. D. (2005) 'Effect of tryptophan depletion on symptoms of motion sickness in migraineurs.', *Neurology*, 65(4), pp. 620–622. doi: 10.1212/01.wnl.0000172339.15577.a6.

Engin, A. B. *et al.* (2010) 'Increased tryptophan degradation in patients with bronchus carcinoma.', *European journal of cancer care*, 19(6), pp. 803–808. doi: 10.1111/j.1365-2354.2009.01122.x.

Eniu, D. T. *et al.* (2019) 'The decrease of some serum free amino acids can predict breast cancer diagnosis and progression.', *Scandinavian journal of clinical and laboratory investigation*, 79(1–2), pp. 17–24. doi: 10.1080/00365513.2018.1542541.

Fitzgerald, P. *et al.* (2008) 'Tryptophan catabolism in females with irritable bowel syndrome: relationship to interferon-gamma, severity of symptoms and psychiatric co-morbidity.', *Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society*, 20(12), pp. 1291–1297. doi: 10.1111/j.1365-2982.2008.01195.x.

Fuchs, D. *et al.* (1990) 'Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms.', *Journal of acquired immune deficiency syndromes*, 3(9), pp. 873–876.

Gauthier, C. *et al.* (2014) 'Symptoms of depression and anxiety in anorexia nervosa: links with plasma tryptophan and serotonin metabolism.', *Psychoneuroendocrinology*, 39, pp. 170–178. doi: 10.1016/j.psyneuen.2013.09.009.

Green, A. R. *et al.* (1980) 'Metabolism of an oral tryptophan load. I: Effects of dose and pretreatment with tryptophan.', *British journal of clinical pharmacology*, 10(6), pp. 603–610. doi: 10.1111/j.1365-2125.1980.tb00516.x.

Greilberger, J. *et al.* (2010) 'Carbonyl proteins as a clinical marker in Alzheimer's disease and its relation to tryptophan degradation and immune activation.', *Clinical laboratory*, 56(9–10), pp. 441–448.

Huang, A. *et al.* (2002) 'Serum tryptophan decrease correlates with immune activation and impaired quality of life in colorectal cancer.', *British journal of cancer*, 86(11), pp. 1691–1696. doi: 10.1038/sj.bjc.6600336.

Iwagaki, H. *et al.* (1995) 'Decreased serum tryptophan in patients with cancer cachexia correlates with increased serum neopterin.', *Immunological investigations*, 24(3), pp. 467–478. doi: 10.3109/08820139509066843.

Kałużna-Czaplińska, J. *et al.* (2019) 'How important is tryptophan in human health?', *Critical reviews in food science and nutrition*, 59(1), pp. 72–88. doi: 10.1080/10408398.2017.1357534.

Kaye, W. H. *et al.* (1988) 'CSF 5-HIAA concentrations in anorexia nervosa: reduced values in underweight subjects normalize after weight gain.', *Biological psychiatry*, 23(1), pp. 102–105. doi: 10.1016/0006-3223(88)90113-8.

Kaye, W. H. *et al.* (2000) 'Effects of acute tryptophan depletion on mood in bulimia nervosa.', *Biological psychiatry*, 47(2), pp. 151–157. doi: 10.1016/s0006-3223(99)00108-0.

Laviano, A. *et al.* (1997) 'Plasma tryptophan levels and anorexia in liver cirrhosis.', *The International journal of eating disorders*, 21(2), pp. 181–186. doi: 10.1002/(sici)1098-108x(199703)21:2<181::aid-eat9>3.0.co;2-h.

Lou, H. C. *et al.* (1985) 'Decreased vigilance and neurotransmitter synthesis after discontinuation of dietary treatment for phenylketonuria in adolescents.', *European journal of pediatrics*, 144(1), pp. 17–20. doi: 10.1007/BF00491918.

Mangge, H et al. (2014) 'Disturbed tryptophan metabolism in cardiovascular disease.', *Current medicinal chemistry*, 21(17), pp. 1931–1937. doi: 10.2174/0929867321666140304105526.

Mangge, Harald *et al.* (2014) 'Obesity-related dysregulation of the tryptophan-kynurenine metabolism: role of age and parameters of the metabolic syndrome.', *Obesity (Silver Spring, Md.)*, 22(1), pp. 195–201. doi: 10.1002/oby.20491.

Marsh, D. M. *et al.* (2002) 'Laboratory-measured aggressive behavior of women: acute tryptophan depletion and augmentation.', *Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology*, 26(5), pp. 660–671. doi: 10.1016/S0893-133X(01)00369-4.

Naushad, S. M. *et al.* (2013) 'Autistic children exhibit distinct plasma amino acid profile.', *Indian journal of biochemistry & biophysics*, 50(5), pp. 474–478.

Nikolaus, S. *et al.* (2017) 'Increased Tryptophan Metabolism Is Associated With Activity of Inflammatory Bowel Diseases.', *Gastroenterology*, 153(6), pp. 1504-1516.e2. doi: 10.1053/j.gastro.2017.08.028.

Ono, J. et al. (1978) 'Tryptophan and hepatic coma.', Gastroenterology, 74(2 Pt 1), pp. 196-200.

Oxenkrug, G. F. (2015) 'Increased Plasma Levels of Xanthurenic and Kynurenic Acids in Type 2 Diabetes.', *Molecular neurobiology*, 52(2), pp. 805–810. doi: 10.1007/s12035-015-9232-0.

Porter, R. J., Marshall, E. F. and O'Brien, J. T. (2002) 'Effects of rapid tryptophan depletion on salivary and plasma cortisol in Alzheimer's disease and the healthy elderly.', *Journal of psychopharmacology* (*Oxford, England*), 16(1), pp. 73–78. doi: 10.1177/026988110201600105.

Reininghaus, E. Z. *et al.* (2014) 'Tryptophan breakdown is increased in euthymic overweight individuals with bipolar disorder: a preliminary report.', *Bipolar disorders*, 16(4), pp. 432–440. doi: 10.1111/bdi.12166.

Ruan, Z. *et al.* (2014) 'Metabolomic analysis of amino acid and fat metabolism in rats with L-tryptophan supplementation.', *Amino acids*, 46(12), pp. 2681–2691. doi: 10.1007/s00726-014-1823-y.

Schroecksnadel, K. *et al.* (2005) 'Tryptophan degradation in patients with gynecological cancer correlates with immune activation.', *Cancer letters*, 223(2), pp. 323–329. doi: 10.1016/j.canlet.2004.10.033.

Smith, C. B. and Kang, J. (2000) 'Cerebral protein synthesis in a genetic mouse model of phenylketonuria.', *Proceedings of the National Academy of Sciences of the United States of America*, 97(20), pp. 11014–11019. doi: 10.1073/pnas.97.20.11014.

S15

Strasser, B., Berger, K. and Fuchs, D. (2015) 'Effects of a caloric restriction weight loss diet on tryptophan metabolism and inflammatory biomarkers in overweight adults.', *European journal of nutrition*, 54(1), pp. 101–107. doi: 10.1007/s00394-014-0690-3.

Suzuki, Y. *et al.* (2010) 'Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer.', *Lung cancer (Amsterdam, Netherlands)*, 67(3), pp. 361–365. doi: 10.1016/j.lungcan.2009.05.001.

Taffe, M. A. *et al.* (2003) 'MDMA exposure alters cognitive and electrophysiological sensitivity to rapid tryptophan depletion in rhesus monkeys.', *Pharmacology, biochemistry, and behavior*, 76(1), pp. 141–152. doi: 10.1016/s0091-3057(03)00217-x.

Weinlich, G. *et al.* (2007) 'Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients.', *Dermatology (Basel, Switzerland)*, 214(1), pp. 8–14. doi: 10.1159/000096906.

Werbach, M. R. (2000) 'Nutritional strategies for treating chronic fatigue syndrome.', *Alternative medicine review : a journal of clinical therapeutic*, 5(2), pp. 93–108.

Widner, B., Leblhuber, F. and Fuchs, D. (2002) 'Increased neopterin production and tryptophan degradation in advanced Parkinson's disease.', *Journal of neural transmission (Vienna, Austria : 1996)*, 109(2), pp. 181–189. doi: 10.1007/s007020200014.