Insight into the photocatalytic mechanism of the optimal x value in BiOBr_xI_{1-x}, BiOCl_xI_{1-x} and BiOCl_xBr_{1-x} series varying with pollutant type

Ruixin Lu, Abdul Hannan Zahid, Qiaofeng Han^D

Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China

Figure S1 EDS spectra of $BiOBr_{0.5}I_{0.5}$ (a) and $BiOBr_{0.95}I_{0.05}$ (b)

Table S1 Apparent rate constant	(<i>k</i>) of MG	photodegradation or	n BiOB $r_x I_{1-x}$ with	different x values
---------------------------------	--------------------	---------------------	---------------------------	--------------------

<i>x</i> values	0	0.05	0.25	0.4	0.5
k (min ⁻¹)	0.01286	0.01634	0.01803	0.02050	0.03145
<i>x</i> values	0.6	0.75	0.875	0.95	1
k (min ⁻¹)	0.01871	0.01723	0.01060	0.00661	0.00630

Table S2 Apparent rate constant (k) of TC photodegradation on $BiOBr_x I_{1-x}$ with different x values

<i>x</i> values	0	0.05	0.25	0.4	0.5
k (min ⁻¹)	0.00251	0.00452	0.00582	0.00735	0.01096
<i>x</i> values	0.6	0.75	0.875	0.95	1
k (min ⁻¹)	0.01193	0.02535	0.03283	0.03739	0.01048

* Corresponding author. E-mail: hanqiaofeng@njust.edu.cn (Q. Han).

Figure S2 Photocatalytic activity of BiOBr_xI_{1-x} for the degradation of 20 mg L⁻¹ TC (a), 10mg L⁻¹ BPA (b), 10mg

L⁻¹ MV (c) and 20 mg L⁻¹ RhB (d) under visible light irradiation

Figure S3 Photocatalytic activity of $BiOCl_xBr_{1-x}$ for the degradation of 20 mg L⁻¹ TC (a), 20 mg L⁻¹ RhB (b), 20 mg L⁻¹ MG (c) and 20 mg L⁻¹ MV (d) under visible light irradiation

Figure S4 Photocatalytic activity of $BiOCl_xI_{1-x}$ for the degradation of 20 mg L⁻¹ RhB (a), 20 mg L⁻¹ TC (b), 30 mg

 $L^{\text{-1}}\,MG$ (c) and 20 mg $L^{\text{-1}}\,MV$ (d) under visible light irradiation

Figure S5 Time-resolved spectral changes of TC (a), RhB (b) and MG (c) over BiOBr_xI_{1-x}

Table S3 Equilibrium adsorption capacity (q_e) for MG adsorption by fresh and used BiOBr_xI_{1-x}

<i>x</i> values	0	0.25	0.5	0.75	0.95	1
$q_{\rm e}$ (Fresh, mg g ⁻¹)	32	35	29	28	25	21
$q_{\rm e}$ (Used, mg g ⁻¹)	20	21	19	16	14	13

Table S4 Equilibrium adsorption capacity (q_e) for TC adsorption by fresh and used BiOBr_xI_{1-x}

<i>x</i> values	0	0.25	0.5	0.75	0.95	1
$q_{\rm e}$ (Fresh, mg g ⁻¹)	15	20	27	28	26	23
$q_{\rm e}$ (Used, mg g ⁻¹)	5	11	18	19	18	14

Fig. S6 Photocatalytic activity of fresh $BiOBr_xI_{1-x}$ and $BiOBr_xI_{1-x}$ after desorption for the degradation of 20 mg L⁻¹ MG (a) and 20 mg L⁻¹ TC (b)

Fig. S7 Effect of contact time on the removal of 20 mg L⁻¹ MG (a, b) and 20 mg L⁻¹ TC (c, d) over fresh BiOBr_xI_{1-x}

(a, c) and used $BiOBr_{x}I_{1-x}(b, d)$

Figure S8 Recycling experiments of TC and MG on BiOBr_{0.95}I_{0.05} and BiOBr_{0.5}I_{0.5}, respectively

Figure S9 XRD pattern of $BiOBr_{0.5}I_{0.5}$ (a) and (b) $BiOBr_{0.95}I_{0.05}$ before and after cycles

Figure S10 Active species trapping experiments of 20 mg L^{-1} TC photodegradation over $BiOBr_{0.95}I_{0.05}$ under visible light irradiation

Figure S11 NBT transformation efficiency on BiOI, $BiOBr_{0.5}I_{0.5}$, $BiOBr_{0.95}I_{0.05}$ and BiOBr under visible light irradiation

Figure S12 SEM images of $BiOBr_{0.5}I_{0.5}\left(a,\,c\right)$ and $BiOBr_{0.95}I_{0.05}\left(b,\,d\right)$

Fig. S13 N₂ adsorption-desorption isotherms of $BiOBr_{0.25}I_{0.75}$ (a), $BiOBr_{0.5}I_{0.5}$ (b), $BiOBr_{0.75}I_{0.25}$ (c) and $BiOBr_{0.95}I_{0.05}$ (d), insets showing the corresponding pore size distribution curves and calculated surface areas and mean pore diameters

Fig. S14 Plots of Δ (pH) vs. pH measured for BiOBr_{0.25}I_{0.75} (a), BiOBr_{0.5}I_{0.5} (b), BiOBr_{0.75}I_{0.25} (c) and BiOBr_{0.95}I_{0.05} (b), BiOBr_{0.75}I_{0.25} (c) and BiOBr_{0.95}I_{0.05} (c) and BiOBr_{0.95}I_{0.95} (c) and BiOBr_{0.95} (c

(d)

Figure S15 Mott-Schottky curves of $BiOBr_{0.95}I_{0.05}$ at different frequency (a) and $BiOBr_xI_{1-x}$ samples with different

x values (b)

Figure S16 UV-vis diffuse reflectance spectra (DRS) and the plots of the $(\alpha hv)^{1/2}$ vs. photon energy (hv) of BiOCl_{0.25}Br_{0.75}, BiOCl_{0.75}Br_{0.25} (a) and BiOCl_{0.25}I_{0.75}, BiOCl_{0.8}I_{0.2} (b)

Figure S17 Mott-Schottky curves of BiOCl_{0.25}Br_{0.75}, BiOCl_{0.75}Br_{0.25} (a) and BiOCl_{0.25}I_{0.75}, BiOCl_{0.8}I_{0.2} (b)

<i>x</i> values	0	0.5	0.95	1
$R_1(\Omega)$	29.13	8.766	13.41	16.43
$R_2(\Omega)$	10334	2116	779.2	3694
CPE-T	3.94E-5	2.2E-3	1.64E-4	6.9E-4
CPE-P	0.86	0.35	0.71	0.79

Table S5 The fitting values of each component in the equivalent circuit diagram

Table S6 The band potentials and band gap energy of BiOCl_{0.25}Br_{0.75}, BiOCl_{0.75}Br_{0.25} BiOCl_{0.25}I_{0.75} and

BiOC	lo.8I0.2
	-0.0-0.2

Samples	$E_{\rm g}\left({ m eV} ight)$	$E_{\rm CB}$ (V)	$E_{\mathrm{VB}}\left(\mathrm{V} ight)$
BiOCl _{0.25} Br _{0.75}	2.48	-0.57	1.91
BiOCl _{0.75} Br _{0.25}	2.89	-0.61	2.28
BiOC1 _{0.25} I _{0.75}	1.97	-0.18	1.79
BiOCl _{0.8} I _{0.2}	2.29	-0.11	2.18

Figure S18 Band structures of BiOCl_{0.25}I_{0.75}, BiOCl_{0.8}I_{0.2}, BiOCl_{0.25}Br_{0.75}, BiOCl_{0.75}Br_{0.25} and the oxidation potential of MG, MV, TC and RhB