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Chemicals and Electrolyte. Ruthenium(IV) oxide hydrate (RuO2·H2O, 99.9%), chromium(III) 

chloride hexahydrate (CrCl3 6H2O, ≥98.0%), nickel(II) nitrate hexahydrate (Ni(NO3)2·6H2O, 

99.99%), cobalt(II) nitrate hexahydrate (Co(NO3)2·6H2O, 99.99%), sodium hypophosphite 

monohydrate (NaH2PO2·H2O, ≥99.0%) and ethanol (C2H5OH, 99%), urea (≥99.5%), ammonium 
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chloride (NH4Cl, 99.99%) were received from Sigma-Aldrich Ltd. Roxarsone (ROX, purity 

>99%) was purchased from Alfa Aesar. All chemicals were analytical grade and used without 

further purification. Chicken and swine meats for real sample practical analysis were purchased 

from local super market. 1.0 M KOH (pH 14.0) was used as a supporting electrolyte in OER 

performance. The phosphate buffer (PB; 0.1 M, pH 7.0) supporting electrolyte for ROX sensing 

was prepared by mixture of 0.0578 M of Na2HPO4•7H2O and 0.0422 M of NaH2PO4•H2O resulting 

0.1 M of Sodium PBS solution. The pH (3‒11) value of the solutions was adjusted with 0.5 M 

H2SO4 and 1.0 M NaOH. All the electrolytes were N2-gas purged for at least 15 min before the 

experiments. Millipore system assisted water was used throughout all the experiments.

Material Characterization. The XRD patterns were obtained from the XPERT-PRO 

spectrometer with Cu Kα radiation (λ = 1.54 Å) to observe the crystalline nature of the catalysts. 

The FT-IR was recorded by using the Perkin-Elmer IR spectrometer to acquire the functional 

group information of the catalysts. The field emission-scanning electron microscopy (FE-SEM) 

images were captured using the JEOL JSM-7610F attached with an energy dispersive X-ray 

analyzer (EDX) from Oxford Instruments. The high-resolution transmission electron microscopy 

(HR-TEM) images were obtained using the Shimadzu JEM-1200 EX at an accelerating voltage of 

200 kV. The elemental mapping and high-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) images were obtained using the Shimadzu JEM-1200 EX bonded 

with HORIBA EMAX X-ACT. The XPS results were recorded using the Thermo ESCALAB 250 

system. The N2-sorption analysis was performed on a Micromeritics, ASAP 2020. Before the N2-

sorption measurement, all the samples were degassed at 180 ˚C for 12 h. Thermogravimetric 

analysis (TGA) with temperature ramp from 25 to 900 ºC at a rate of 10 ºC min1 in an air 

atmosphere was used to study the thermal stability of powdered samples. Measurements were 
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carried out on a NETZSCH TG-209 instrument. The UV-visible absorption spectra were carried 

out with a Thermo Scientific evolution 220 UV-visible spectrophotometer.

Electrochemical Measurement for OER. A conventional three-electrode system combined with 

a CHI-405a electrochemical workstation (CHI Instruments, USA) was used for the 

electrochemical measurements at room temperature. A glassy carbon (GC, 0.07 cm2) and for long-

term stability rotating disk (RDGC, 0.196 cm2) electrode coated with catalysts ink was used as the 

working electrode, and a platinum wire electrode as the counter, and a Hg/HgO electrode (with 

saturated NaOH solution) was employed as the reference electrodes, respectively. The catalyst ink 

(6.0 mg mL−1) was prepared by blending the catalyst powder (6.0 mg) into the 1.0 mL of solution 

containing 0.73 mL of ultrapure water, 0.25 mL of isopropanol, and 20 μL of 0.5 wt.% Nafion 

solution and sonicated to obtain a homogeneous ink. A certain amount of catalyst ink was dropped 

onto the polished GC (pipetted 10.0 μL) and RDGC (pipetted 28.0 μL) electrode surface, leading 

to a catalyst loading of ~0.85 mg/cm2 and oven-dried. All the potentials were calculated according 

to reversible hydrogen electrode (RHE) scale: E (RHE) = E(Hg/HgO) + 0.098 + 0.059 × pH. The 

LSV and the stability measurements were performed in 1.0 M KOH solution at a scan rate of 5.0 

mV s−1 to obtain the polarization curves. In order to get the original current, no IR compensation 

was not performed for the LSV curves. The Tafel slope was calculated from polarization curves 

on the basis of the Tafel equation: η = a + b log |j|, where η is the overpotential (mV), b is the Tafel 

slope, and j is the current density (mA cm-2). Electrochemical impedance spectroscopy (EIS) was 

carried out by measuring in the frequency range of 1050.1 Hz at a same configuration at  = 0.15 

V with an amplitude of 5 mV and the spectrum was shown as Nyquist plot. The electrochemical 

active surface area (ECSA) of the electrocatalyst was calculated by ECSA = Cdl/Cs*S where Cdl 

was estimated from the CV of the double-layer region of electrocatalyst at various scan rates from 
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5 to 80 mV s-1 in the potential of 1.01.2 V vs. RHE, Cs is general specific capacitance (0.040 mF 

cm2 in 1.0 M KOH electrolyte), and S is the geometric surface area of GCE (0.07 cm2). The 

capacitive currents of ΔJJa-Jc/2 at 1.06 V vs. RHE were plotted against the scan rates. The slope of 

the curves was the double-layer capacitance. As we confirmed that the GCN and bare GC 

electrodes are contribute very low activity for OER at the current density lower than 10 mA cm-

2,which is meaningless to discuss its performance; therefore, its TOFs values, EIS, and ECSA are 

not presented in this work.

Electrochemical Measurement for ROX Sensor. The electrochemical system was carried out in 

a three-electrode such as a glassy carbon electrode (GCE, 0.07 cm2) with catalyst as the working, 

a platinum wire electrode as the counter, and an Ag/AgCl electrode (with saturated KCl) as the 

reference at room temperature. The CHI instruments used for CV and DPV measurements were 

CHI-405a and CHI-900 electrochemical workstation from the USA, respectively. The Nyquist plot 

was obtained by electrochemical impedance spectroscopy (EIS, EIM6ex Zahner, a Germany 

instrument) under a frequency range of 100–0.01 Hz and amplitude of 5.0 mV at an overpotential 

of 150 mV in a mixed solution of 5.0 mM [Fe(CN)6]3/4 and 0.1 M KCl. The catalyst ink (2.0 mg 

mL−1) were prepared by 2.0 mg of the catalyst dispersed into the 1.0 mL DI water without any 

binder. Subsequently, the mixture was treated with sonication for at least 1 h. The modifying GCE 

was polished with 0.3 µM of γ-alumina powder and rinsed in the DI water flow. To the polished 

GCE, an optimized amount of as-prepared electrocatalyst suspension was coated on the electrode 

surface and dried at 50 ˚C for 3 min. The CV and DPV were performed in a potential range from 

+0.4 to -1.0 V (vs. Ag/AgCl) under N2-purged 0.1 M PB (pH 7.0) solution at a constant scan rate 

of 50 mV s−1 to obtain the electron transfer curves. 
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Real Sample Preparation for ROX Practical Analysis. A piece of purchased meat (Binjiang 

market, Taipei city) was cut into 3-4 tiny slices and subsequently, soaked into ultrapure water for 

a whole day. The meat soaked solution were separated by using Whatman filter paper and then 

centrifuged at 6000 rpm to settle down the extracted meat substances. From the solution, the 

supernatant layer was separated to use for experimental purposes.

Photocatalytic degradation of ROX. The photocatalytic degradation reactions were carried out 

using 50 mL of 5.0 mM ROX (pH 7.0) dispersed with 10 mg of as-prepared different 

photocatalysts. Then the above solution was stirred for 30 min before the light irradiation to 

accomplish catalyst-ROX (adsorption/desorption) equilibrium. For the photocatalysis reactions, 

simulated visible-light (VL, xenon lamp, 500 W) irradiation was given from the top of the 

photocatalytic reactor kept at a 40 cm distance. During the VL irradiation, about 3.0 mL of aliquots 

were taken every 5 mins, filtered by 0.22 µm sterile syringe filters (PureTech™, Taiwan), and 

used for further spectrophotometric measurements (Thermo Scientific evolution 220) for the 

conformations of ROX degradation. Finally, the rate constants for each catalytic reaction with 

ROX was calculated.

Turn Over Frequency (TOF). 

To investigate the intrinsic oxygen-evolving catalytic activity of synthesized catalysts in this work, 

the turnover frequencies (TOFs) and surface activities are calculated by the redox feature of the 

catalysts (Fig. S11-14) as follows.[S1]

TOF= j × NA / F × n × Г

where, j is current density taken at 10 mA cm2, NA is Avogadro number, F is Faraday constant, n 

is number of electrons, and Г is Surface concentration.

Determination of Faradaic Efficiency
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The Faradaic efficiency of the CrNiCo-P/GCN catalyst for the OER was measured by the RDGE 

technique and calculated by the following equation:

Faradaic efficiency = jR  nD/jD  nR  N

where, jR and jD are the ring and disk currents, respectively, nD and nR are the apparent number of 

electrons transferred at disk and ring, respectively. N is the collection efficiency (0.33  0.01, Fig. 

S15). 
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Fig. S1. (a) LSV, (b) Tafel curves and (c) Impedance of the CrNi-P, CrCo-P, CrCo-P/GCN, and 

CrNi-P/GCN in 1.0 M KOH solution for OER with a scan rate of 5 mV s−1. The different amount 

ratio of CrNiCo-P:GCN based (d) LSV, (e) Tafel curves, and (f) Impedance of the 1:2, 1:1, and 

1:2, respectively. Inset of (c) and (f) are model of Randles circuit.
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Fig. S2. (a) LSV curves of different amount of Cr loaded in the CrNiCo-P/GCN measured in 1.0 

M KOH solution with a scan rate of 5 mV s−1. 

Fig. S3. (a) N2-adsorption/desorption isotherms and (b) pore diameter distributions of pristine 

GCN and CrNiCo-P/GCN samples.
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Fig. S4. TGA analysis of pristine GCN and CrNiCo-P/GCN samples.

(a) (b)

(c) (d)

Fig. S5. (a,b) FE-SEM images of CrNiCo-P, (c) FE-SEM-EDX elemental mapping of CrNiCo-P 

and (d) corresponding individual elemental mapping of Cr (yellow), Ni (red), Co (dark blue), P 

(magenta).
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Fig. S6. (a) HR-TEM STEM-HAADF image of CrNiCo-P/GCN, (b) overall elemental mapping 

of CrNiCo-P/GCN and corresponding elemental mapping of (c) Cr, (d) Ni, (e) Co, (f) P, (g) C, (h) 

N. 

Fig. S7. (a) The HR-TEM dark image indicating the TEM-EDS line scan position and the spectrum 

of representative line scans of (b) Cr, (c) Ni, (d) Co, (e) C, (f) N, and (g) P.
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Fig. S8. High-resolution XPS spectrum of C 1s for pure GCN and CrNiCo-P/GCN.
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Fig. S9. The different scan rates performance of (a) NiCo-P, (b) NiCo-P/GCN, (c) CrNiCo-P, and 

(d) CrNiCo-P/GCN. 
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Fig. S10. (a-c) CV profiles of CrCo-P and (b-d) CrCo-P/GCN show the area of redox at a scan rate 

of 300 mV s-1, features considered for the calculation of number of surface active sites.
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Fig. S11. (a-c) CV profiles of CrNi-P and (b-d) CrNi-P/GCN show the area of redox at a scan rate 

of 300 mV s-1, features considered for the calculation of number of surface active sites.
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Fig. S12. (a-c) CV profiles of NiCo-P and (b-d) NiCo-P/GCN show the area of redox at a scan rate 

of 300 mV s-1, features considered for the calculation of number of surface active sites.
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Fig. S13. (a-c) CV profiles of CrNiCo-P and (b-d) CrNiCo-P/GCN show the area of redox at a 

scan rate of 300 mV s-1, features considered for the calculation of number of surface active sites.
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Fig. S14. CV curves of ferricyanide-ferrocyanide redox couple for the calculation of stable 

“collection efficiency (N)” at CrNiCo-P/GCN RDGE in 0.1 M KCl with 5 mM [Fe(CN)6]3/4
  at 

a scan rate of 10 mV s-1 with rotating speed from 200–2400 rpm. The ring potential was set at 0.23 

V vs. Hg/HgO. The N was calculated to be 0.33 ± 0.01 using equation of N = -IR/ID (the ring (IR) 

and disk (ID) currents in unit of mA).

Fig. S15. Determination of Faradaic efficiency of oxygen evolution reaction on CrNiCo-P/GCN 

RDGE in 1 M KOH at a rotating rate of 1600 rpm. The disk and ring currents, and the Faradaic 
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efficiency of RRDE are plotted versus applied disk potential. The ring potential is set at 0.32 V vs. 

RHE. 

Fig. S16. Liquid FT-IR spectrum of before and after OER long-term stability of CrNiCo-P/GCN.

Note: The resultant sample contains a Nafion polymer so it may be slightly different from the 

original. 
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Fig. S17. FE-SEM images of CrNiCo-P/GCN: (a) Before OER long-term stability with 

corresponding FE-SEM-EDX elemental mapping of (a1-a8) Mix, Cr, Ni, Co, P, C, N, and O. (b) 

After OER long-term stability with corresponding FE-SEM-EDX elemental mapping of (b1-b8) 

Mix, Cr, Ni, Co, P, C, N, and O.

Note: The resultant sample contains a Nafion polymer so it may be slightly different from the 

original. 
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Fig. S18. XPS spectrum of before and after OER long-term stability of CrNiCo-P/GCN: (a) overall 

survey, and high-resolution of (b) Ni 2p, (c) Co 2p, (d) P 2p, (e) Cr 2p, (f) N 1s, (g) C 1s, (h) O 1s.

Note: The resultant sample contains a Nafion polymer and the sample were coated on ITO glass 

for XPS measurement so it may be slightly different from the original. 
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Fig. S19. (a) CV curves of various amount of loading CrNiCo-P/GCN catalyst on the electrode 

and (b) corresponding bar chart diagram of peak current versus catalyst loading. 

Fig. S20. Dependence calibration plot of peak current response (green) and peak potential (blue) 

of ROX (0.03 mM) against various pH value (3‒9). 
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Fig. S21. (a) Live Photos of 0.03 mM ROX without catalyst at pH ranges such as 3.0, 5.0, 7.0 

and 9.0 and (b) Corresponding UV spectra.
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Fig. S22. Comparison of CV curves of as-prepared catalysts modified GCEs measured in 0.1 

mM of ROX.
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Fig. S23. CV curves of different scan rate (20–380 mV s1) of CrNiCo-P/GCN/GCE in 0.1 mM 

of ROX.
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Fig. S24. Chronoamperometry response of various concentration of ROX (0.025‒0.125 mM) at 

the CrNiCo-P/GCN.
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Fig. S25. (a) Charge transfer properties of bare GCE, NiCo-P, CrNiCo-P, GCN, and CrNiCo-

P/GCN modified GCEs (inset: equivalent circuit model), (b) corresponding linear fitting of Z′ 

versus ω−1/2 in the low-frequency region.

Fig. S26. (a) CV curves of Bare GCE, GCN, NiCo-P, NiCo-P/GCN, CrNiCo-P, and CrNiCo-

P/GCN modified GCE measured in 0.1 M KCl with 5 mM FC/FC+ at a scan rate of 50 mV/s and 

(b) the corresponding energy level diagrams.
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Fig. S27. (a) Stability test for 14 days in presence of ROX (0.1 mM), (b) Reproducibility of the 

GCE at 6 independent measurements in presence of ROX (0.1 mM), (c) Repeatability of the sensor 

for 0.1 mM of ROX at CrNiCo-P/GCN/GCE, respectively, and (d) the bar diagram between peak 

current versus cycle runs. All experiments done in 0.1M PB (pH 5.0) at scan rate of 50 mV s-1.
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Fig. S28. (a) Consecutive 100 CV cycles of ROX (0.1 mM) in 0.1M PB (pH 5.0) at scan rate of 

50 mV s-1.
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Fig. S29. The FE-SEM images of CrNiCo-P/GCN: (a) Before ROX sensor stability with 

corresponding FE-SEM-EDX elemental mapping of (a1-a8) Mix, Cr, Ni, Co, P, C, N, and O. (b) 

After ROX sensor stability (0.1 mM) with corresponding FE-SEM-EDX elemental mapping of 

(b1-b8) Mix, Cr, Ni, Co, P, C, N, and O.



S34

Fig. S30. XPS spectrum of before and after ROX sensing long-term stability of CrNiCo-P/GCN: 

(a) overall survey, and high-resolution of (b) Ni 2p, (c) Co 2p, (d) P 2p, (e) Cr 2p, (f) N 1s, (g) C 

1s, (h) O 1s.

Note: The resultant sample was coated in ITO glass for XPS measurement so it may be slightly 

different from the original. 
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Fig. S31. Practical sensor of ROX (0-0.003 mM) at CrNiCo-P/GCN in (a) chicken and (b) swine 

meats. 

Fig. S32. Liquid FTIR spectrum of before and after reduction of ROX solution with phosphate 

buffer (pH 5.0).
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Fig. S33. UV-Vis absorption spectra for the photodegradation of ROX in the (a) absence of VL, 

(b) GCN, and (c) NiCo-P catalysts. 
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Fig. S34. (a,b) UV spectra and (c,d) Tauc plots of GCN and CrNiCo-P/GCN.
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Fig. S35. Photocurrent measurement of GCN and CrNiCo-P/GCN in 0.1 M NaOH under the UV 

light wavelength of 365 nm.

Fig. S36. The XPS high-resolution spectra of As 3d before photodegradation, and after 

photodegradation of ROX in the presence of CrNiCo-P/GCN.
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Fig. S37. The FE-SEM images of CrNiCo-P/GCN: (a) Before photodegradation stability material 

of ROX with corresponding FE-SEM-EDX elemental mapping of (a1-a8) Mix, Cr, Ni, Co, P, C, 

N, and O. (b) After photodegradation stability material of ROX with corresponding FE-SEM-EDX 

elemental mapping of (b1-b8) Mix, Cr, Ni, Co, P, C, N, and O.
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Fig. S38. XPS spectrum of before and after ROX photodegradation stability of CrNiCo-P/GCN: 

(a) overall survey, and high-resolution of (b) Ni 2p, (c) Co 2p, (d) P 2p, (e) Cr 2p, (f) N 1s, (g) C 

1s, (h) O 1s.

Note: The resultant sample was coated in ITO glass for XPS measurement so it may be slightly 

different from the original. 
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Table S2. Elemental quantitative results of CrNiCo-P/GCN from HRTEM-EDS. 

Elements Weight%

Cr K 7.98

Ni K 30.08

Co K 4.85

P K 4.44

C K 37.38

N K 1.27

Total 100

Table S3. Elemental results for CrNiCo-P/GCN, CrNiCo-P, NiCo-P, and GCN derived from 

surface sensitive XPS.

Samples Ni 2p (%) Co 2p (%) P 2p (%) Cr 2p (%) N 1s (%) C 1s (%)

CrNiCo-P/GCN 36.96 8.13 4.66 1.95 1.61 46.69

CrNiCo-P 76.60 13.51 6.65 3.33  

NiCo-P 52.13 21.86 26.01   

GCN     2.79 97.21

Table S1.Summary of textural properties of prepared samples

textural properties
Samples

SBET
a (m2 g1) Vtot

a (cm3 g1) Dp
b (nm)

GCN 62.29 0.0082 1.18

CrNiCo-P/GCN 43.27 0.0031 1.12
aBET surface area, SBET, and pore volume, Vtot, derived at P/P0 = 0.99. bPore diameter, Dp, calculated 

by the Barrett–Joyner–Halenda (BJH) method using adsorption branches of isotherms.
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Table S4. Summary of various catalytic electrodes for OER in 1.0 M KOH.

Electrocatalysts OER (j=10 mA cm-2, mV) ref.

NiCo-NiCoO2@NCa 318 S2

NiCo2O3@OMCb 281 S3

Mo2C@CSc 320 S4

Ni0.75Fe0.25-N, P, S/C 290 S5

CoP/rGO 340 S6

POd-Ni/Ni-N-CNTs 420 S7

Fe-Ni@NC-CNTs 274 S8

NiCoFeP 273 S9

NiO 405 S10

CoP/C 330 S11

NiCoP/NCa PHCse 297 S12

CrNiCo-P

CrNiCo-P/GCN

330

290

This work

This work
aN-doped Carbon. bOrdered Mesoporous Carbon. CCarbon Sheet. dPartially Oxidized. ePolyhedral 

Nanocages.

Table S5. The Turn Over Frequencies (TOFs) values of synthesized catalysts for OER (at J = 10 

mA cm1) 

Catalysts TOFs value (s-1)

CrCo-P 0.012

CrCo-P/GCN 0.020

CrNi-P 0.041

CrNi-P/GCN 0.103

NiCo-P 0.042

NiCo-P/GCN 0.094

CrNiCo-P 0.029

CrNiCo-P/GCN 0.889
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Table S6. The redox peak potentials and energy levels of prepared catalyst.

Oxidation (V)a Reduction (V) a

Electrode Eonset Eonset HOMO (eV)b LUMO (eV) b

GCN 0.084 -0.23 -4.65 -4.50

NiCo-P 0.016 -0.20 -4.71 -4.53

NiCo-P/GCN 0.002 -0.24 -4.73 -4.49

CrNiCo-P -0.01 -0.17 -4.72 -4.56

CrNiCo-P/GCN -0.018 -0.23 -4.71 -4.50
a vs. Ag/AgCl.
bHOMO and LUMO energy levels were calculated from CV diagram, and the redox of 

ferrocene/ferrocenium (Fc/Fc+) was 0.07 V (onset) vs. Ag/AgCl for calibration. It was assumed 

that the redox potential of Fc/Fc+ has an absolute energy level of -4.80 eV to vacuum.

Table S7. Comparison of CrNiCo-P/GCN modified electrode to the previously reported 

literatures for electrochemical detection of ROX.

Modified Catalyst Method Electrolyte/

pH

WLR

(µM)

LOD

(µM)

Sensitivity

(µA µM1 

cm2)

ref. 

MCPMEa DPV 0.04 M 

BRBj/2.0

2–100 0.53 – S13

SrWO4 NPsb/GrOc/GCE AMi 0.1 M PB/7.0 0.035–

1816.5

0.0225 9.985 S14

WS2NRsd/N-

rGOse/SPCEf

DPV 0.05 M PB/7.0 0.1–442.6  0.075  14.733 S15

WS2 NSsg/SPCEf DPV 0.05 M PB 

/7.0

0.05–490  0.030 28.966   S16

CoMn2O4-500/SPCEf DPV 0.05 M PB/7.0 0.01-
0.84;0.84-
1130

0.002 33.13 S17

La2(MoO4)3/SPCEf DPV 0.05 M PB/7.0 0.025-2650 0.0124 13.366 &
42.619

S18
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Tm-BTC MOF/GCE DPV 0.1 M PB/7.0 0.00015-
770

0.0001 - S19

CrNiCo-P/GCN/GCE DPV 0.1 M PB/5.0 0.001–

0.413 mM

0.031 1.7619 µA 

mM1 cm2

This 

work

aModified carbon paste microelectrode. bStrontium tungstate. cGraphene oxide. dTungsten 

sulfide nanorods. eNitrogen doped reduced graphene oxides. fScreen printed carbon electrode. 
gTungsten disulfide nanosheets. hThulium Metal. iAmperomety. jBritton–Robinson buffer.

Table S8. Voltammetric determination of ROX in chicken and swine meat samples.

Meat sample Spiked (mM) Found (mM) Recovery 

(%)

RSD*

unrealized 0.001 0.00  

realized 0.001 0.00098 98.0 ±0.061

Chicken

realized 0.003 0.0029 99.5 ±0.047

unrealized 0.001 0.00  

realized 0.001 0.00097 97.5 ±0.082

Swine

realized 0.003 0.0029 99.5 ±0.095

*Measurement of three experiments (n = 3) and presented the best data Fig. only.
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Table S9. Chemical structure and some properties of ROX used in this study

Common name Roxarsone (ROX)

IUPAC name (4-hydroxy-3-nitrophenyl)arsonic acid

Synonyms 3-Nitro-4-hydroxyphenylarsonic acid; 

Nitrophenolarsonic acid; 4-Hydroxy-3-

nitrophenylarsonic acid; 4-Hydroxy-3-

nitrobenzenearsonic acid; 2-Nitro-1-

hydroxybenzene-4-arsonic acid; (4-Hydroxy-3-

nitrophenyl)arsonic acid;

Appearance Tufts of pale-yellow needles or rhombohedral 

plates

Empirical formula C6H6AsNO6

Melting point >300 ºC (572 ºF; 573 K)

Solubility in water (mg L1) less than 1 mg at 23 oC (72 ºF) 

Solubility in other solvents Slightly sol in cold water; freely sol in methanol, 

ethanol, acetic acid, acetone, alkalies; sol in about 

30 parts boiling water; insol in ether, ethyl acetate; 

sparingly sol in dil mineral acids

Molecular weight (g mol1) 263.04 

Stablilty Stable under ordinary conditions (light sensitive)

Chemical Class Organoarsonic acid

Toxicity Oral rat LD50; 81mg/kg

Applications 4-Hydroxy-3-nitrobenzenearsonic acid, an arsenic 

derivative, is used in veterinary medicine to 

promote growth, feed efficiency and pigmentation 

and to control swine dysentery. It is used as a 

synergist of primary anticoccidials which treat or 

inhibit the growth of coccidiosis in animals or in 

man.

https://pubchem.ncbi.nlm.nih.gov/#query=C6H6AsNO6
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