Electronic supplementary information (ESI)

Enhanced piezotronics by single-crystalline ferroelectrics for uniformly strengthening the piezo-photocatalysis of electrospun BaTiO₃@TiO₂ nanofibers

Bi Fu^{a, b, c} Jianjie Li^a, Huaide Jiang^a, Xiaoli He^a, Yanmei Ma^a, Jingke Wang^a,

Chaoyang Shi^{*d} and Chengzhi Hu $^{*a,\,c}$

- ^a Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- ^b School of Optoelectronic Engineering, Guangdong Polytechnic Normal University,
 Guangzhou 510665, China.
- ^c Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.

^{*}Corresponding author. E-mail: hucz@sustech.edu.cn (C. Hu); chaoyang.shi@tju.edu.cn (C. Shi).

TGA analysis of BaTiO₃/TiO₂/PVP nanofibers. Fig. S1 shows the TGA curve of BaTiO₃/TiO₂/PVP precursor nanofibers that are annealed in the air with temperatures ranging from 50 to 800 °C. The weight of the precursor nanofibers steadily decreases with the increase of temperature. The minor mass loss between 50-300 °C is due to the removal of solvents. The second endothermic peak accompanied by the mass loss about 65% between 300-400 °C is attributed to the decomposition of PVP and butyl titanate. The mass loss in the temperature range of 400-500 °C is related to the decomposition of organic groups. About 92% mass loss is observed around 500 °C. There is no mass loss above 500 °C, which indicates the crystallization temperature. Thus, a temperature above 500 °C is used to anneal the BaTiO₃/TiO₂/PVP precursor nanofibers to ensure crystallization.

Figure S1. TGA curves of $BaTiO_3/TiO_2/PVP$ precursor nanofibers at temperatures ranging from 50 to 800 °C.

TiO₂ nanofibers are fabricated by a sol-gel assisted electrospinning followed by annealing. First, 0.65 g tetrabutyl titanium is dissolved into 8 mL ethanol, then 3.0 g PVP is added to increase its viscosity. The obtained 0.2 M TiO₂ precursor solution is loaded into a 10 mL plastic syringe with a G-21 stainless-steel needle. The feeding rate is controlled at 0.3 mL h⁻¹ by a syringe pump. The distance between the needle tip and the ground collector is fixed at 12 cm. The relative humidity is kept within 30% at room temperature. Under a high voltage of 14 kV, TiO₂/PVP precursor nanofibers are collected by an aluminum foil for 5 h. The as-spun precursor nanofibers are dried at 120 °C overnight. Finally, TiO₂ nanofibers are obtained by sintering the dried precursor nanofibers at 500 °C for 2 h at the heating and cooling rates of 2 °C min⁻¹.

Fig. S2 shows the SEM image of TiO₂ nanofibers with a diameter of approximately 250 nm. The TEM image in Fig. S2(b) reveals that the TiO₂ nanofiber is composed of nanocrystals with an average size of 5 nm. Fig. S2(c) shows the HR-TEM image obtained from the white box in Fig. S2(b). The interplanar crystal spacing of 2.4 Å is ascribed to the (004) crystallographic plane of TiO₂. The full (Fig. S2(d)) and electron (Fig. S2(e)) mapping images of single TiO₂ nanofiber is composed of the individual Ti (Fig. S2(f)) and O (Fig. S2(g)) element mappings. All element mappings exhibit a one-dimensional fibric outline that confirms the successful synthesis of TiO₂ nanofibers.

Figure S2. Morphology and microstructure of TiO₂ **nanofibers.** (a) SEM, (b) TEM, and (c) HR-TEM, (d) full, (e) electron, (f) Ti, and (g) O element mapping images of TiO_2 nanofibers.

Figure S3. The UV-vis absorption spectra of BaTiO₃ nanoparticles under ultrasound irradiation.

Figure S4. The photograph of the piezocatalytic, photocatalytic, and piezophotocatalytic degradation of MO in water by BaTiO₃@TiO₂ hybrid nanofibers under ultrasound, UV light irradiation, and both ultrasound and UV light irradiation, respectively.

Figure S5. The UV-vis absorption spectra of the degradation of MO in water without catalysts under both ultrasound and UV light irradiation.

Figure S6. UV-vis absorption spectra of photocatalytic degradation of MO in water by TiO_2 nanofibers under the UV light irradiation.

Figure S7. (a-f) UV-vis absorption spectra of the piezo-photocatalytic degradation of MO in water by $BaTiO_3@TiO_2$ hybrid nanofibers under both ultrasound and UV light irradiation in 6 cycles, respectively.