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Experimental Section

Characterizations: The phase compositions of as-prepared samples were determined 

by the X-ray diffraction (XRD). The structure and morphologies were characterized by 

the field-emission scanning electron microscope (FESEM, Sigma 500) and a H-8100 

transmission electron microscopy (TEM). The energy dispersive spectrometer (EDS) 

and element maps were taken on a Sigma 500 FESEM unit. The Raman spectra were 

collected on an Invia Raman spectrometer with the excitation laser wave-length of 633 

nm. The electronic conductivity of the samples was achieved by the resistivity tester 

(ST2253y). The X-ray photoelectron spectra (XPS) was recorded on an ESCALAB 250 

spectrometer (Perkin-Elmer). The specific surface areas were calculated using a 

standard Brunauer-Emmett-Teller (BET) method on a Belsorp-max surface area 

detecting instrument. 

Electrochemical measurements: The assembly of CR2032 coin cells was carried in 

an argon-filled glove box with water and oxygen contents below 0.5 ppm. The active 

materials (80%), conductive carbon black (10%), and polyvinylidene fluoride (PVDF, 

10%) were mixed and ground in a mortar. N-Methyl-2-pyrrolidone (NMP) was used as 

the solvent to make homogeneous slurry. Then, the as-resultant slurry was uniformly 

pasted on Cu foil current collector and dried in vacuum oven at 80 °C for 12 h and then 

120 °C for another 12 h as the working electrode. Lithium metal foil as counter 

electrode and 1 mol L-1 LiPF6 solution with the mixture of EC: DEC: EMC at volume 

ratio of 1:1:1 as electrolyte. The charge-discharge profiles of the samples were 

determined by cycling in the potential range of 0.01-3 V at different current rates. 

Cyclic voltammetry measurements (CV, at different scanning rates) and 

electrochemical impedance spectroscopy (EIS, in the frequency range from 100,000 to 

0.01 Hz) were investigated on a Parstat 4000+ workstation (Princeton Applied 

Research). 



Fig S1. XRD patterns of Ni/Mo2C/NC-700 and Ni/Mo2C/NC-900.
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Fig. S2 TGA curves of Ni/Mo2C/NC and Mo2C/NC.

The TGA analysis of Ni/Mo2C/NC and Mo2C/NC was carried out to calculate the 

carbon content in Ni/Mo2C/NC. The Mo2C/NC and Ni/Mo2C/NC samples were 

prepared with the same annealed temperature and precursor, just with or without the 

Ni. The increasing mass of Ni/Mo2C/NC is corresponded to the oxidation of Ni and 

Mo2C. The carbon content in Ni/Mo2C/NC is determined to be about 62.69 wt%.
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Fig S3 XPS survey spectrum of Ni/Mo2C/NC.
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Fig S4 The optimized model of Ni/Mo2C.



Fig S5 The migration paths of Li+ in Ni/Mo2C (a) and Mo2C (b).

Fig S6 N2 adsorption-desorption isotherm (a) and pore size distribution (b) of 

Ni/Mo2C/NC according to the NLDFT model.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50
 

 

V
ol

um
e 

ab
so

rb
ed

 (c
m

3  g
-1

)

Relative pressure (P/P0)

 Absorption
 Desorption

(a)

0 10 20 30 40 50 60

0.000

0.005

0.010

0.015

0.020
(b)

 

 

dV
/d

D
 (c

m
3  g

-1
  n

m
-1

)

Pore size (nm)



Fig. S7 FESEM images of Ni-Mo-PAN precursor.



Fig S8 (a, b) FESEM images of Ni/Mo2C/NC-700. (c, d) FESEM images of 

Ni/Mo2C/NC-900.
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Fig S9 Comparison of the cyclic performances of Ni/Mo2C/NC with different contents 

of Ni.

Fig S10 XRD patterns of Ni/Mo2C/NC with different contents of Ni.10 20 30 40 50 60 70 80
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Fig S11 (a) CV curves of Mo2C/NC at different scan rates. (b) Log (i) vs. log (v) plots 

at each redox peak of Mo2C/NC. (c) Capacitive contribution to charge storage of 

Mo2C/NC at a scan rate of 0.1 mV s-1. (d) Percentage of capacitance contribution of 

Mo2C/NC at different scan rates.
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Table S1. Comparison of the electrochemical performance of Ni/Mo2C/NC with 

reported Mo2C-based anodes for LIBs. 

Rate capability Cyclic performanceMo2C-based 

materials Current density (A 

g-1)/Capacity (mA h 

g-1)

Current density (A g-1)/Cycle 

number/Capacity (mA h g-1)

Ref.

3DHP-Mo2C 3/255.6 1/600/481.4 [r1]

Mo2C/C 3/648.1 0.75/650/899 [r2]

Mo2C/C/rGO 4/200 0.5/1600/630 [r3]

Mo2C/C NRs 6/100 1/1000/300 [r4]

Mo2C@CNT 16/225 1.6/750/878 [r5]

Mo2C-C 2/335.4 2/50/308 [r6]

Mo2C/N-C MHNWs 5/486.3 2/700/732.9 [r7]

Mo2C@C-GA 5/669.3 1/200/804.5 [r8]

C@α-Mo2C 20/204 5/2000/400 [r9]

Mo2C(52.6%)/GR 1.6/310 0.1/100/813 [r10]

HP-Mo2C-C 10/317 0.3/100/873.6 [r11]

This work 10/344.1 2/1800/412.7
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