Ni activated Mo₂C by regulating the interfacial electronic structure for highly efficient lithium-ion storage

Donglei Guo^{a,1}, Mengke Yang^{a,b,1}, Shu Xu^a, Shuping Zhu^a, Guilong Liu^a, Naiteng Wu^a, Ang Cao^c, Hongyu Mi^{b,*} and Xianming Liu^{a,*}

^a Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
*Email: myclxm@163.com

^b State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, P. R. China.

*Email: mmihongyu@163.com

^c Department of Physics, Technical University of Denmark, Lyngby 2800, Denmark.

¹These authors contributed equally.

Experimental Section

Characterizations: The phase compositions of as-prepared samples were determined by the X-ray diffraction (XRD). The structure and morphologies were characterized by the field-emission scanning electron microscope (FESEM, Sigma 500) and a H-8100 transmission electron microscopy (TEM). The energy dispersive spectrometer (EDS) and element maps were taken on a Sigma 500 FESEM unit. The Raman spectra were collected on an Invia Raman spectrometer with the excitation laser wave-length of 633 nm. The electronic conductivity of the samples was achieved by the resistivity tester (ST2253y). The X-ray photoelectron spectra (XPS) was recorded on an ESCALAB 250 spectrometer (Perkin-Elmer). The specific surface areas were calculated using a standard Brunauer-Emmett-Teller (BET) method on a Belsorp-max surface area detecting instrument.

Electrochemical measurements: The assembly of CR2032 coin cells was carried in an argon-filled glove box with water and oxygen contents below 0.5 ppm. The active materials (80%), conductive carbon black (10%), and polyvinylidene fluoride (PVDF, 10%) were mixed and ground in a mortar. N-Methyl-2-pyrrolidone (NMP) was used as the solvent to make homogeneous slurry. Then, the as-resultant slurry was uniformly pasted on Cu foil current collector and dried in vacuum oven at 80 °C for 12 h and then 120 °C for another 12 h as the working electrode. Lithium metal foil as counter electrode and 1 mol L⁻¹ LiPF₆ solution with the mixture of EC: DEC: EMC at volume ratio of 1:1:1 as electrolyte. The charge-discharge profiles of the samples were determined by cycling in the potential range of 0.01-3 V at different current rates. Cyclic voltammetry measurements (CV, at different scanning rates) and electrochemical impedance spectroscopy (EIS, in the frequency range from 100,000 to 0.01 Hz) were investigated on a Parstat 4000+ workstation (Princeton Applied Research).

Fig S1. XRD patterns of Ni/Mo₂C/NC-700 and Ni/Mo₂C/NC-900.

Fig. S2 TGA curves of Ni/Mo₂C/NC and Mo₂C/NC.

The TGA analysis of Ni/Mo₂C/NC and Mo₂C/NC was carried out to calculate the carbon content in Ni/Mo₂C/NC. The Mo₂C/NC and Ni/Mo₂C/NC samples were prepared with the same annealed temperature and precursor, just with or without the Ni. The increasing mass of Ni/Mo₂C/NC is corresponded to the oxidation of Ni and Mo₂C. The carbon content in Ni/Mo₂C/NC is determined to be about 62.69 wt%.

Fig S3 XPS survey spectrum of Ni/Mo₂C/NC.

Fig S4 The optimized model of Ni/Mo₂C.

Fig S5 The migration paths of Li^+ in Ni/Mo₂C (a) and Mo₂C (b).

Ni/Mo₂C/NC according to the NLDFT model.

Fig. S7 FESEM images of Ni-Mo-PAN precursor.

Fig S8 (a, b) FESEM images of Ni/Mo₂C/NC-700. (c, d) FESEM images of Ni/Mo₂C/NC-900.

Fig S9 Comparison of the cyclic performances of Ni/Mo $_2$ C/NC with different contents of Ni.

Fig S11 (a) CV curves of Mo_2C/NC at different scan rates. (b) Log (i) vs. log (v) plots at each redox peak of Mo_2C/NC . (c) Capacitive contribution to charge storage of Mo_2C/NC at a scan rate of 0.1 mV s⁻¹. (d) Percentage of capacitance contribution of Mo_2C/NC at different scan rates.

Mo ₂ C-based	Rate capability	Cyclic performance	Ref.
materials	Current density (A	Current density (A g ⁻¹)/Cycle	
	g-1)/Capacity (mA h	number/Capacity (mA h g ⁻¹)	
	g ⁻¹)		
3DHP-Mo ₂ C	3/255.6	1/600/481.4	[r1]
Mo ₂ C/C	3/648.1	0.75/650/899	[r2]
Mo ₂ C/C/rGO	4/200	0.5/1600/630	[r3]
Mo ₂ C/C NRs	6/100	1/1000/300	[r4]
Mo ₂ C@CNT	16/225	1.6/750/878	[r5]
Mo ₂ C-C	2/335.4	2/50/308	[r6]
Mo ₂ C/N-C MHNWs	5/486.3	2/700/732.9	[r7]
Mo ₂ C@C-GA	5/669.3	1/200/804.5	[r8]
C@a-Mo ₂ C	20/204	5/2000/400	[r9]
Mo ₂ C(52.6%)/GR	1.6/310	0.1/100/813	[r10]
HP-Mo ₂ C-C	10/317	0.3/100/873.6	[r11]
This work	10/344.1	2/1800/412.7	

Table S1. Comparison of the electrochemical performance of Ni/Mo₂C/NC with reported Mo₂C-based anodes for LIBs.

References

[r1] T. Meng, L. R. Zheng, J. W. Qin, D. Zhao and M. H. Cao, *J. Mater. Chem. A*, 2017, 5, 20228-20238.

[r2] F. C. Lyu, S. S. Zeng, Z. F. Sun, N. Qin, L. J. Cao, Z. Y. Wang, Z. Jia, S. F. Wu,
F. X. Ma, M. C. Li, W. X. Wang, Y. Y. Li, J. Lu and Z. G. Lu, *Small*, 2019, 15, 1805022.

- [r3] K. K. Halankar, B. P. Mandal, S. Nigam, C. Majumder, A. P. Srivastava, R. Agarwal and A. K. Tyagi, *Energy Fuels*, 2021, 35, 12556-12568.
- [r4] Z. W. Yang, H. F. Wang, B. S. Cheng, C. Yue, G. Z. Liu, R. T. Zheng, F. Hu and J. Shu, *Energy Technology*, 2020, 8, 2000189.
- [r5] B. Yu, D. X. Yang, Y. Hu, J. R. He, Y. F. Chen and W. D. He, Small Methods, 2018, 3, 1800287.
- [r6] Q. Gao, X. Y. Zhao, Y. Xiao, D. Zhao and M. H. Cao, *Nanoscale*, 2014, 6, 6151-6157.
- [r7] L. C. Yang, X. Li, S. N. He, G. H. Du, X. Yu, J. W. Liu, Q. S. Gao, R. Z. Hu and M. Zhu, J. Mater. Chem. A, 2016, 4, 10842-10849.
- [r8] H. L. Xin, Y. Hai, D. Z. Li, Z. Z. Qiu, Y. M. Lin, B. Yang, H. S. Fan and C. Z. Zhu, *Appl. Surf. Sci.*, 2018, 441, 69-76.
- [r9] F. Hu, Z. M. Liu, C. Yue, J. Xiang and T. Song, *ChemistrySelect*, 2018, 3, 8395-8401.
- [r10] B. B. Wang, G. Wang and H. Wang, J. Mater. Chem. A, 2015, 3, 17403-17411.
- [r11] Y. Xiao, L. R. Zheng and M. H. Cao, Nano Energy, 2015, 12, 152-160.