Electronic Supplementary Information

In-situ passivation of Pb⁰ traps by fluoride acid-based ionic liquid enables enhanced

emission and stability of CsPbBr₃ nanocrystals for efficient white light-emitting

diodes

Yanqiao Xu,^{ab} Xiaobo Hu,^c Haijie Chen,*^c Huidong Tang,^b Qing Hu,^b Ting Chen,^a Weihui Jiang,^{ab}

Lianjun Wang*c and Wan Jiang^c

^aNational Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333000, China

^bSchool of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333000,

China

^cState Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

Fig. S1 (a) Evolution of PL intensity and peak positions and (b) calculated Urbach energy of CsPbBr₃ NCs with different $n_{[Bmim]BF4}/n_{Pb}$ ratios.

Fig. S2 (a) HAADF-STEM image, (b) Cs, (c) Pb, (d) Br, (e) B, and (f) F elemental maps of $CsPbBr_3$

NCs prepared with $n_{[Bmim]BF4}/n_{Pb}=0.12$.

Fig. S3 Plot of the FWHM of CsPbBr₃ NCs prepared (a) without and (b) with the assistance of

Fig. S4 XPS (a) survey spectra, and (b) Cs 3d core-level, and (c) Br 3d core-level spectra of CsPbBr₃

NCs prepared with and without the assistance of [Bmim]BF₄.

Fig. S5 XRD patterns of CsPbBr₃ NCs prepared with different chain length of ionic liquid: (a) [Mim]BF₄, (b) [Emim]BF₄, (c) [Hmim]BF₄, and (d) [Omim]BF₄.

Fig. S6 Absorption spectra, PL spectra, and evolution of PL intensity and peak positions in dependence with the values of the molar ratios of (a-c) $n_{[Mim]}^+/n_{Pb}$, (d-f) $n_{[Emim]}^+/n_{Pb}$, (g-i) $n_{[Hmim]}^+/n_{Pb}$, (j-l) $n_{[Omim]}^+/n_{Pb}$.

Fig. S7 TEM images and size distribution histograms of CsPbBr₃ NCs prepared by using ionic liquid with different chain length: (a, e) [Mim]BF₄, (b, f) [Emim]BF₄, (c, g) [Hmim]BF₄, and (d, h) [Omim]BF₄.

Fig. S8 Decay curves of CsPbBr₃ NCs prepared by using ionic liquid with different chain length.

Fig. S9 XRD patterns of CsPbBr₃ NCs prepared with different $n_{[Bmim]PF6}/n_{Pb}$ ratios of 0, 0.06, 0.12,

0.18, and 0.24.

Fig. S10 XRD patterns of CsPbBr₃ NCs prepared with different n_{NaBF4}/n_{Pb} ratios of 0, 0.06, 0.12,

0.18, and 0.24.

Fig. S11 Absorption spectra, PL spectra, and evolution of PL intensity and peak positions in dependence with the values of the molar ratios of (a-c) $n_{[Bmim]PF6}/n_{Pb}$, (d-f) n_{NaBF4}/n_{Pb} .

Fig. S12 TEM images of CsPbBr₃ NCs prepared using (a, b) [Bmim]PF₆, and (c, d) NaBF₄ as additives.

Fig. S13 FT-IR spectra of NaBF₄ and CsPbBr₃ NCs prepared with the assistance of NaBF₄.

(e) N 1s core-level, and (f) F 1s core-level spectra of $CsPbBr_3$ NCs prepared with and without the assistance of $NaBF_4$.

Fig. S14 XPS (a) survey spectra, and (b) Cs 3d core-level, (c) Pb 4f core-level, (d) Br 3d core-level,

Fig. S15 PL spectra of CsPbBr₃ NCs prepared (a) without and (b) with the assistance of [Bmim]BF₄

in dependence with the storage time.

Fig. S16 PL spectra of CsPbBr₃ NCs prepared (a) without and (b) with the assistance of [Bmim]BF₄

in dependence with the irradiation time of UV light.

$n_{\rm [Bmim]BF4}/n_{\rm Pb}$	Plane	FWHM/°	Calculated Size ^a /nm	Intensity
0	(200)	0.806	10.11	119
0.06	(200)	0.788	10.34	135
0.12	(200)	0.727	11.21	208
0.18	(200)	0.695	11.72	243
0.24	(200)	0.580	14.05	414

Table S1 FWHM data and calculated average size of CsPbBr₃ NCs prepared with different $n_{[Bmim]BF4}/n_{Pb}$ ratios.

^a Calculated size is obtained from Scherrer equation: $D=K\lambda/Bcos\theta$, where D represents the particle size of NCs, B represents the FWHM of (200) plane, and θ represents the diffraction angle. K is equal to 0.89.

Table S2 Fitting parameters of PL decay curves and calculated k_r and k_{nr} of CsPbBr₃ NCs with

different $n_{[Bmim]BF4}/n_{Pb}$ ratios.

n _{[Bmim]BF4} /n _{Pb}	τ_1/ns	B ₁ /%	τ_2/ns	B ₂ /%	χ ²	τ _{av} /ns	<i>k</i> _r /s ⁻¹	<i>k</i> _{nr} /s ⁻¹
0	12.88	80.12	120.87	19.88	0.9965	88.43	7.22×10 ⁶	4.09×10 ⁶
0.06	10.67	92.13	60.73	7.87	0.9845	27.05	3.46×10 ⁷	2.38×10 ⁵
0.12	10.13	95.32	65.70	4.68	0.9850	23.55	4.01×10 ⁷	2.32×10 ⁵
0.18	14.65	88.61	78.27	11.39	0.9946	40.55	2.23×10 ⁷	2.39×10 ⁵

Table S3 Fitting parameters of PL decay curves of CsPbBr₃ NCs prepared by using ionic liquid with different chain length.

Sample	τ_1/ns	B ₁ /%	τ_2/ns	B ₂ /%	χ ²	τ_{av}/ns
Without IL	12.88	80.12	120.87	19.88	0.9965	88.43
[Mim]BF ₄	12.73	89.15	80.01	10.85	0.9952	41.89
[Emim]BF ₄	12.55	92.41	85.73	7.59	0.9968	38.85
[Hmim]BF ₄	11.69	94.49	75.72	5.51	0.9962	29.24
[Omim]BF ₄	34.47	85.37	87.33	14.63	0.9840	50.47

Materials	Storage	UV light	Water	Ref
	The NC film		Maintaining 80% of	
CsPbBr ₃ @SiO ₂ Janus	presents bright	The NC film shows	PL intensity after	
NCs	emission after	slight drop (~2%) of PL	being treated water	[66]
	storage in air for	intensity	for 7 days	
	4 days			
		Keeping more than	Remaining 87% of PL	
Quasi-2D CsPbBr ₃	_	85% of PL intensity	intensity after 168 h	[67]
NCs		after 120 min UV light	water treatment	
		irradiation		
		Maintaining 43% of	Holding 83% of PL	
CsPbBr ₃ /Pb-MA	_	initial PL intensity after	intensity after being	[68]
composite		36 h UV light	immersed in water	
		irradiation	for 192 h	
4-Bromo-butyric			Maintaining 79% of	
acid passivated	_	_	PL intensity after 72	[69]
CsPbBr ₃ NCs			h in aqueous	
			solution	
	Holding 85% of	Retaining ~90% of	Reserving 67.5% of	
[Bmim]BF ₄	initial PL	initial intensity after	initial emission	This
passivated CsPbBr ₃	intensity after	continuous irradiation	intensity after 21	work
NCs	storage 1512 h	under a UV light for	days water	
	-	360 min	treatment	
		360 min	treatment	

Table S4 Storage, UV light, and water stability of perovskite NCs.