Supporting Information

Low-temperature N-anchored ordered Pt₃Co intermetallic nanoparticles as electrocatalysts for methanol oxidation reaction

Yanru Li^{a, b‡}, Hongwei Li^{a, b‡}, Guixian Li^{a, b}, Dongliang Wang^{a, b}, Shoudeng Wang^{a,} b, Xinhong Zhao^{a, b, *}

a School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China

b Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China

* Corresponding author: College of Petrochemical Technology, Lanzhou University of

Technology, 36 Pengjiaping Road, Lanzhou, Gansu Province, 730050, China. E-mail:

licpzhaoxh@lu126.com (XH. Zhao)

‡ Yanru Li and Hongwei Li contributed equally to this paper

DFT Computational Method

The DFT calculations were conducted based on the Vienna Ab-inito Simulation Package $(VASP)^{[1, 2]}$. The electron-ion interactions were described by the Projected Augmented-Wave (PAW) potentials, while the exchange-correlation interactions were calculated by employing the Perdew-Burke-Enzerhof (PBE) pseudopotentials of Generalized Gradient Approximation (GGA)^[3, 4]. The PAW and PBE exchange-correlation functional supplied with the VASP package were employed for C (2s²2p² 08Apr2002), N (2s²2p³ 08Apr2002), Pt (5d⁹6s¹ 04Feb2005) and Co (3d⁷4s² 02Aug2007). For structural optimization, the kinetic energy cutoff of the plane wave basis set was chosen to be 520 eV and the Brillouin zone integration is performed with 2×2×1 k points. An energy tolerance of 1.0×10-6 eV, and a maximum displacement of 1.0×10-2Å were considered.

The vdW-D3 method developed by Grimme was employed to describe the van der Waals interaction^[5]. The plane-wave energy cutoff was set as 520 eV. The convergence threshold was set as 1.0×10 -6 eV in energy and 0.01 eV per Angstrom in force. A four-layer face centered cubic structure of the Pt (111) or Pt₃Co (111) was adopted in which the lattice constant was chosen from Materials Project^[6]. A vacuum layer of 15 Å was adopted to avoid the periodic interactions and the bottom two layers were fixed in order to increase the calculation efficiency. The Brillouin zone was modeled by gamma centered Monkhorst-Pack scheme, in which a $3 \times 3 \times 1$ grid was adopted. Each electrochemical reaction step of methanol oxidation involves a (H⁺ + e⁻) pair transfer from the adsorbed species on the surface to the electrolyte.

The change in the Gibbs free energy of each $(H^+ + e^-)$ pair transfer reaction was calculated by computational hydrogen electrode (CHE) model:

$$\Delta \mathbf{G} = \Delta \mathbf{E}_{\text{pot}} + \Delta \mathbf{E}_{\text{ZPE}} - \mathbf{T} \Delta \mathbf{S}$$

In which the ΔE_{pot} , ΔE_{ZPE} and the ΔS were referred to as the change in potential energy, the change in the zero-point energy and the change in the entropy.

The zero-point energy was calculated by the summation of all vibrational frequencies:

$$\mathsf{E}_{\mathsf{ZPE}} = \frac{1}{2} \sum h v$$

where the v corresponded to the vibriational frequency of each normal model[7].

References

[1] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. **1996**, 6, 15-50.

[2] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. **1996**, 54, 11169-11186.

[3] Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 50 (1994) 17953-17979.

[4] Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396-1396.

[5] Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., **2010**, 132, 154104.

[6] Jain A, Ong S P, Hautier G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL materials, **2013**, 1, 011002.

[7] Li Y, Chan S H, Sun Q. Heterogeneous catalytic conversion of CO_2 : a comprehensive theoretical review. Nanoscale. **2015**, 7, 8663-8683.

Figure S1. Different TEM images of a) Pt₃Co/N-CNT-U, b) Pt₃Co/N-CNT-M, c) Pt₃Co/N-CNT-

P, d) Pt₃Co/N-CNT-T, e) Pt₃Co/N-CNT-H, and f) Pt₃Co/CNTs.

Figure S2. Particle size distribution histograms of Pt₃Co supported on a) N-CNT-U, b) N-CNT-M, c) N-CNT-P, d) N-CNT-T, e) N-CNT-H, and f) CNTs.

Figure S3. Structural and compositional characterizations of $Pt_3Co/N-CNT-U$ (a_1-e_1), $Pt_3Co/N-CNT-P$ (a_2-e_2), $Pt_3Co/N-CNT-T$ (a_3-e_3) and $Pt_3Co/N-CNT-H$ (a_4-e_4). a_1-_4) HRTEM; b_{1-4}) HAADF-STEM images; c_{1-4}), d_{1-4}) EDX elemental mapping images; e_{1-4}) Elemental surface scans of area in c_{1-4} ; The inset in (a_{1-4}) is the enlarged HRTEM image of the selected area. The N, C, Co and Pt atoms are in green, red, purple and yellow colors, respectively.

Figure S4. XPS patterns for a) survey; b) C 1s; c) Co 2p regions of Pt₃Co/N-CNT-U, Pt₃Co/N-CNT-M, Pt₃Co/N-CNT-P, Pt₃Co/N-CNT-T, Pt₃Co/N-CNT-H, and Pt₃Co/CNTs.

Figure S5. Hydrogen desorption domains of a) Pt₃Co/N-CNT-U; b) Pt₃Co/N-CNT-M; c) Pt₃Co/N-CNT-P; d) Pt₃Co/N-CNT-T; e) Pt₃Co/N-CNT-H; f) Pt₃Co/CNTs, and g) Pt/N-CNT-M.

Figure S6. CO-stripping voltammograms of Pt_3Co/N -CNT (U, P, T, H) at a scan rate of 50 mV s⁻¹ in 0.5 M H₂SO₄.

Figure S7. CVs of Pt₃Co/N-CNT-M, Pt₃Co/CNTs, Pt/N-CNT-M, and commercial Pt/C before and after 500 potential cycles.

Figure S8. TEM images of the Pt₃Co/N-CNT-M before (a) and after (b) durability test.

Figure S9. Comparison of XPS spectra of the Pt₃Co/N-CNT-M before and after durability test.

Figure S10. The structural formula and N content for a) urea; b) melamine; d) polyethyleneimine; c) triethylenetetramine; and e) hydrazine hydrate.

Table S1. TGA, Raman and ICP-OES results of Pt₃Co NPs supported on N-CNT-U, N-CNT-M, N-CNT-P, N-CNT-T, N-CNT-H, and CNTs.

Samples	N doping (wt%)		N doping (wt%)		Pt ₃ Co loading (wt%)	Decomposition temperature (°C)	Raman I _D /I _G	Pt:Co ratio by ICP-OES
N-CNT-U	^a 1.14	^b 1.08	17.7	380 ~ 545	1.26	4.01:1		
N-CNT-M	1.21	1.19	18.7	410 ~ 572	1.35	3.92:1		
N-CNT-P	0.95	0.83	18.8	410 ~ 575	1.37	3.95:1		
N-CNT-T	0.62	0.60	14.5	$410\sim570$	1.31	3.86:1		
N-CNT-H	0.65	0.55	18.5	410 ~ 610	1.32	3.90:1		
CNTs	-	-	10.8	280 ~ 550	1.23	3.84:1		

^a The TGA data.

b The elemental analysis test data.

Table S2. Surface areas, pore volumes and pore size distribution of N-CNT-U, N-CNT-M, N-CNT-P, N-CNT-T, N-CNT-H, and CNTs.

Samples	SBET $(m^2 \cdot g^{-1})$	$V_{micro} (cm^{3} \cdot g^{-1})$	V_{meso} (cm ³ •g ⁻¹)	$V_{total} (cm^{3} \cdot g^{-1})$
N-CNT-U	141.1	0.003	0.815	0.818
N-CNT-M	191.8	0.007	0.764	0.771
N-CNT-P	194.2	0.012	0.798	0.810
N-CNT-T	170.4	0.012	0.778	0.790
N-CNT-H	227.2	0.010	0.910	0.920
CNTs	110.0	0.003	0.680	0.683

Samples	Pt ⁰ (%)	Pt ²⁺ (%)
Pt ₃ Co/N-CNT-U	70.9	29.1
Pt ₃ Co/N-CNT-M	74.5	25.5
Pt ₃ Co/N-CNT-P	70.6	29.4
Pt ₃ Co/N-CNT-T	69.5	30.5
Pt ₃ Co/N-CNT-H	69.4	30.6
Pt ₃ Co/CNTs	65.9	34.1

Table S3. The amount of Pt^0 and Pt^{2+} for $Pt_3Co/N-CNT$ (U, M, P, T, H), and $Pt_3Co/CNTs$.

Table S4. ECSA, Current density, I_f/I_b , Initial potential, Mass and Specific activity of $Pt_3Co/N-CNT$ (U, M, P, T, H), $Pt_3Co/CNTs$, and Pt/N-CNT-M.

Samples	ECSA $(m^2 \cdot g^{-1})$	Current density (mA•mg ⁻¹ Pt)	I_{f}/I_{b}	Initial potential (eV)	Mass activity (mA•mg ⁻¹ Pt)	Specific activity (mA•cm ⁻²)
Pt ₃ Co/N-CNT-U	183.46	742.2	1.46	0.23	742.2	5.91
Pt ₃ Co/N-CNT-M	213.17	767.8	2.95	0.20	767.8	6.11
Pt ₃ Co/N-CNT-P	183.78	528.2	1.80	0.23	528.2	4.20
Pt ₃ Co/N-CNT-T	132.36	353.4	2.19	0.25	353.4	2.81
Pt ₃ Co/N-CNT-H	113.57	310.4	3.30	0.26	310.4	2.47
Pt ₃ Co/CNTs	83.33	234.2	-	0.38	234.2	1.86
Pt/N-CNT-M	58.41	211.0	-	0.37	211.0	1.68
Pt/C	-	91.4	-	0.44	91.4	0.73

Table S5. DFT	calculated bingi	ng energies	of Pt ₃ Co on	the surface of	of CNTs	and N-CNT.
	U	0 0	5			

С	Pt ₃ Co	C-Pt ₃ Co	Eads
-6.66419770E+02	-1.61955060E+01	-6.83250090E+02	-6.34814000E-01
CN	Pt ₃ Co	CN-Pt ₃ Co	Eads
-6.41212860E+02	-1.61955060E+01	-6.63242610E+02	-5.83424400E+00

Intermediates	VASP	Free energy correction	Corrected energy	Real free energy	ΔG	Relative G
CH ₃ OH*	-438.231	1.254	-436.977	-451.197	-	0.000
CH ₂ OH*	-434.694	0.993	-433.701	-451.321	-0.124	-0.124
CHOH*	-430.734	0.730	-430.004	-451.024	0.297	0.173
COH*	-427.483	0.363	-427.119	-451.539	-0.515	-0.342
CO*	-424.088	0.131	-423.957	-451.777	-0.238	-0.580
CO*+OH*	-434.196	0.390	-433.806	-450.806	0.971	0.391
CO ₂	-430.309	-0.257	-430.567	-450.967	-0.161	0.230

Table S6. Calculated Gibbs free energies (eV) of intermediates on Pt (111) surface for MOR.

Intermediates	VASP	Free energy correction	Corrected energy	Real free energy	ΔG	Relative G
CH ₃ OH*	-453.030	1.268	-451.762	-465.982	-	0.000
CH ₂ OH*	-448.588	1.044	-447.544	-465.164	0.819	0.819
CHOH*	-445.000	0.747	-444.253	-465.273	-0.109	0.709
COH*	-441.285	0.421	-440.864	-465.284	-0.011	0.698
CO*	-438.454	0.120	-438.334	-466.154	-0.870	-0.171
CO*+OH*	-449.025	0.438	-448.587	-465.587	0.566	0.395
CO ₂	-444.748	-0.257	-445.005	-465.405	0.182	0.577

Table S7. Calculated Gibbs free energies (eV) of intermediates on Pt₃Co (111) surface for MOR.