Supplementary Material

Cu-induced NiCu-P and NiCu-Pi with Multilayered Nanostructures as Highly Efficient Electrodes for Hydrogen Production via Urea Electrolysis

Xiao Xu,¹ Shan Ji,^{2*} Hui Wang,¹ Xuyun Wang,^{1**} Vladimir Linkov,³ Peng

Wang,⁴ Lei Pan,⁴ Guoqiang Wang,⁴ Rongfang Wang^{1***}

¹ State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical

Engineering, Qingdao University of Science and Technology, Qingdao, 266042,

China

² College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing,

314001, China

³ South African Institute for Advanced Materials Chemistry, University of the Western

Cape, Cape Town, 7535, South Africa

⁴ Shandong Hydrogen Energy Co., Ltd, Weifang, 261000, China

Physical characterization

X-ray diffraction (XRD) was carried out on a Shimadzu XD-3A Instrument, which was fitted with a Cu-K α radiation filter ($\lambda = 0.15418$ nm) and operated at 30 mA and 40 kV. A JEM-2000 FX JEOL microscope operated at 200 kV was used for recording transmission electron microscopy (TEM) and high angle annular dark-field scanning transmission electron microscopy (STEM) images as well as selected area electron diffraction (SAED) analysis. X-ray photoelectron spectra (XPS) were obtained on a VG Escalab210 Spectrometer with a Mg 300 W X-ray source. The reference value chosen for correcting the instrumental aberrations was depended on the binding energy of C 1s, which was 284.8 eV, and the number of scans for examined was 0.1 eV.

Electrochemical characterization

A three-electrode electrochemical cell linked with a potentiostat/galvanostat (CHI 760, CH Instruments) was applied to evaluate the HER, UOR and OER electrocatalytic properties. In this three-electrode cell, Hg/HgO and graphite rod were used as reference electrode (RE) and counter electrode (CE) respectively. For comparison, Pt/C and RuO₂ electrodes were also prepared by dispersing 16 mg the catalyst, 2 μ L of polymer binder PTFE, 2 mg acetylene black in 300 μ L isopropyl alcohol to form a homogenous slurry. After rolling into a slice and oven drying at 60°C, the mixture was pressed onto the 1 cm × 1 cm Ni foam under 20 MPa. 1.0 M KOH aqueous solution and 1.0 M KOH with 0.33 M urea aqueous solution were used as electrolyte for electrocatalytic testing. For convenience, the measured potential versus the reversible electrode (RHE) were converted according to the equation:

$$E_{\rm RHE} = E_{\rm Hg/HgO} + 0.059 \,\,\text{pH} + 0.098 \tag{1}$$

Linear sweep voltammetry (LSV) were measured at a scan rate of 5 mV s⁻¹. The LSV curves were corrected for *iR* compensation (80%). Electrochemical impedance spectroscopy (EIS) spectra were measured at corresponding UOR and HER electrode potentials from 0.01 to 1,000,000 Hz with an amplitude of 5 mV. Moreover, a Nafion membrane was used for blocking bubble diffusion during the gas collection process by a classical drainage method in the three-electrode mode. The electrochemical surface area (ECSA) of the materials was derived from the double-layer capacitance (C_{dl}), which was measured by cyclic voltammetry (CV) in non-Faradaic regions under potentials ranging from -0.8 V to -0.7 V and from -0.1 V to -0 V vs Hg/HgO at scan rates from 20 mV s⁻¹ to 120 mV s⁻¹. Currents at -0.75 V and -0.05 V were used to calculate C_{dl} and ECSA according to the following equations:

$$\mathbf{j} = \mathbf{v} \cdot \mathbf{C}_{dl} \tag{2}$$

$$ECSA = C_{dl} / (C_s \times S)$$
(3)

Where j is the double-layer charging current density, v is the scan rate, C_s represents the specific electrode surface capacitance (μ F cm⁻²) and S is the working electrode area (cm²). The value of C_s in an alkaline media was accepted to be 40 μ F cm⁻².

Figure S1. SEM images of NiCu-OH/NF-0.3.

Figure S2. SEM images of Ni_2P/NF (a-b) and Ni-Pi/NF (c-d).

Figure S3. SEM images of NiCu-P/NF-0.1 (a-b) and NiCu-Pi/NF-0.1 (c-d).

Figure S4. SEM images of NiCu-P/NF-0.5 (a-b); NiCu-Pi/NF-0.5 (c-d) and NF (e).

Figure S5. SEAD image (a) and EDX result (b) of NiCu-P/NF-0.3.

Figure S6. SEAD image (a) and EDX result (b) of NiCu-Pi/NF-0.3.

Figure S7. Survey XPS spectra of NiCu-P/NF-0.3 (a) and NiCu-Pi/NF-0.3 (b).

Figure S8. Ni 2p XPS of NiCu-Pi/NF-0.3 and Ni-Pi/NF (a); Cu 2p XPS (b) and P 2p XPS (c) of NiCu-Pi/NF-0.3.

Figure S9. Ni 2p XPS (a), Cu 2p XPS (b) and P 2p XPS (c) of NiCu-OH/NF-0.3.

Figure S10. XRD pattern of NiCu-OH/NF-0.3

Figure S11. HER LSVs of NiCu-P/NF-0.1, NiCu-P/NF-0.3 and NiCu-P/NF-0.5 (a) and

UOR LSVs of NiCu-Pi/NF-0.1, NiCu-Pi/NF-0.3 and NiCu-Pi/NF-0.5 (b).

Figure S12. HER LSV in 1 M KOH with 0.33 M urea and 1 M KOH of NiCu-P/NF.

Figure S13. Cyclic Voltammetry plots at different scan rates (20 mV/s to 120 mV/s) of NiCu-P/NF (a), NiCu-OH/NF (b), Ni₂P/NF (c) and NF (d) for HER.

Figure S14. ECSA of NiCu-P/NF, NiCu-OH/NF, Ni₂P/NF and NF for HER (a) and ECSA normalized LSVs of HER (b); Cyclic Voltammetry plots at different scan rates (20 mV/s to 120 mV/s) of NiCu-P/NF-0.1 (c) and NiCu-P/NF-0.5 (d); ECSA of NiCu-P/NF-0.1, NiCu-P/NF-0.3 and NiCu-P/NF-0.5 for HER (e) and ECSA normalized LSVs of HER (f).

Figure S15. SEM image of NiCu-P/NF after HER stability testing.

Figure S16. UOR LSV and OER LSV in 1 M KOH with 0.33 M urea and 1 M KOH of NiCu-Pi/NF.

Figure S17. Cyclic Voltammetry plots at different scan rates (20 mV/s to 120 mV/s) of NiCu-Pi/NF (a), NiCu-OH/NF (b), Ni-Pi/NF (c) and NF (d) for UOR.

Figure S18. ECSA of NiCu-Pi/NF, NiCu-OH/NF, Ni-Pi/NF and NF for HER (a) and

ECSA normalized LSVs of UOR.

Figure S19. SEM image of NiCu-Pi/NF after UOR stability testing.

Figure S20. The contact angle images.

Materials –	Loading amount (mg kg)		Atomic p	Atomic percentage		
	Ni	Cu	Ni	Cu		
NiCu-P/NF-0.1	960886.2	31539.8	96.0886%	3.1540%		
NiCu-P/NF-0.3	922250.5	73771.8	92.2251%	7.3772%		
NiCu-P/NF-0.5	847836.7	139726.9	84.7837%	13.9727%		

 Table S1. ICP analysis data of metals in the as-prepared catalysts with different Cu

 dosages.

Table S2. The relative peak area of the orbital peaks.

Element	Materials	Relative peak area			
Ni	NiCu-P/NF	$2p_{1/2}$ Ni ²⁺ -62%	2p _{1/2} Ni ⁰ -38%	$2p_{3/2}Ni^{2+}\text{-}62\%$	2p _{3/2} Ni ⁰ -38%
	NiCu-Pi/NF	/		$2p_{3/2}Ni^{2+}81\%$	2p _{3/2} Ni ⁰ -19%
	NiCu-OH/NF			/	
Cu	NiCu-P/NF	$2p_{1/2} Cu^{2+}\text{-}54\%$	$2p_{1/2}Cu^{+}46\%$	$2p_{3/2} Cu^{2+} 31\%$	$2p_{3/2} Cu^{+}\text{-}69\%$
	NiCu-Pi/NF	$2p_{1/2} Cu^{2+}53\%$	$2p_{1/2} Cu^{+} 47\%$	$2p_{3/2}$ Cu ²⁺ -66%	$2p_{3/2} \ Cu^{+}\text{-}34\%$
	NiCu-OH/NF	$2p_{1/2} Cu^{2+}-70\%$	$2p_{1/2}$ Cu ⁺ -30%	$2p_{3/2}$ Cu ²⁺ -73%	$2p_{3/2} Cu^{+} 27\%$
Р	NiCu-P/NF	P-M -18%		P-O -82%	
	NiCu-Pi/NF	P-M -15%		P-O -85%	
Ο	NiCu-OH/NF	OH ⁻ -80%		O ²⁻ -13%	H ₂ O _{ab} -7%

Materials	UOR		HEF	HER		
	R _s	R _{ct}	R _s	R _{ct}		
NF	0.98	47.24	0.85	49.51		
NiCu-OH/NF	0.70	24.81	0.99	16.65		
Ni ₂ P/NF	/		1.04	18.81		
NiCu-P/NF	/		0.72	5.79		
Ni-Pi/NF	1.08	8.98	/			
NiCu-Pi/NF	0.63	5.95	/			

Table S3. EIS resistance (Ω) fitting values.

 Table S4. Conductivity and square resistance of different materials.

Materials	Square resistance (m Ω ·mm)	Conductivity (KS/mm)	
NF	2.87	0.35	
NiCu-OH/NF	2.33	0.43	
Ni ₂ P/NF	1.92	0.52	
NiCu-P/NF	1.64	0.61	
Ni-Pi/NF	2.12	0.47	
NiCu-Pi/NF	1.78	0.56	

Electrode	Morphology	Electrolyte	Cell voltage (V)	Ref.
NiCu-P/NF and NiCu-Pi/NF	Multilayer Structure	1 M KOH+0.33 M Urea	1.410 (10 mA cm ⁻²) 1.514 (50 mA cm ⁻²) 1.568 (100 mA cm ⁻²)	This work
NiCoB@C	Alloy	1 M KOH+0.33 M Urea	1.62 (100 mA cm ⁻²)	1
Ni(OH)2@NF	Core-shell	1 M KOH+0.3 M Urea	1.45 (50 mA cm ⁻²)	2
Co-Ni(OH) ₂ /NF	Nanoparticle	1 M KOH+0.5 M Urea	1.63 (50 mA cm ⁻²)	3
Ni-Co ₉ S ₈ /CC	Nanosheet	1 M KOH+0.33 M Urea	1.52 (10 mA cm ⁻²)	4
Ni ₂ P/Ni _{0.96} S/NF	Microsphere	1 M KOH+0.5 M Urea	1.453 (10 mA cm ⁻²)	5
Ni ₃ N/NF	Nanosheet	1 M KOH+0.5 M Urea	1.51 (100 mA cm ⁻²)	6
NiF ₃ /Ni ₂ P@CC	Nanoparticle	1 M KOH+0.33 M Urea	1.54 (10 mA cm ⁻²)	7
V-FeNi ₃ N/Ni ₃ N	Nanosheet	1 M KOH+0.33 M Urea	1.46 (10 mA cm ⁻²)	8
NF/PPy-Ni ₃ S ₂	Nanowire	1 M KOH+0.33 M Urea	1.5 (20 mA cm ⁻²)	9
NiS/MoS ₂ /NF	Nanosheet	1 M KOH+0.5 M Urea	1.48 (10 mA cm ⁻²)	10
S-Co ₂ P@Ni ₂ P	Core-shell	١	1.43 (10 mA cm ⁻²)	11
NiO/Ni ₂ P/NF	Nanosheet	1 M KOH+0.33 M Urea	1.559 (50 mA cm ⁻²)	12
Ni ₃ S ₂ -NiS/NF	Nanorod	1 M KOH+0.5 M Urea	1.54 (50 mA cm ⁻²)	13
NiFeMo/NF	Film	1 M KOH+0.33 M Urea	1.46 (10 mA cm ⁻²)	14
NiMoSe/NF	Nanosphere	1 M KOH+0.33 M Urea	1.44 (10 mA cm ⁻²)	15

 Table S5. Cell voltage of different Ni-based electrodes found in recently reported

 literature.

References

1. B. Kim, G. Das, J. Kim, H. H. Yoon and D. H. Lee, *J. Colloid Interface Sci.*, 2021, **601**, 317-325.

2. L. Xia, Y. Liao, Y. Qing, H. Xu, Z. Gao, W. Li and Y. Wu, ACS Appl. Energ. Mater., 2020, **3**, 2996-3004.

3. C. B. Sun, M. W. Guo, S. S. Siwal and Q. B. Zhang, J. Catal., 2020, 381, 454-461.

4. P. Hao, W. Zhu, L. Li, J. Tian, J. Xie, F. Lei, G. Cui, Y. Zhang and B. Tang, *Electrochim. Acta*, 2020, **338**, 135883.

5. M. He, C. Feng, T. Liao, S. Hu, H. Wu and Z. Sun, *ACS Appl. Mater. Interfaces*, 2020, **12**, 2225-2233.

6. Z. Zhao, J. Zhao, H. Wang, X. Li, L. Yang, Z. Zhao, X. Liu, Y. Liu, P. Liu and Z. Cai, *Int. J. Hydrogen Energ.*, 2020, **45**, 14199-14207.

7. K. Wang, W. Huang, Q. Cao, Y. Zhao, X. Sun, R. Ding, W. Lin, E. Liu and P. Gao, *Chem. Eng. J.*, 2022, **427**, 130865.

8. J. Wang, Y. Sun, Y. Qi and C. Wang, ACS Appl. Mater. Interfaces, 2021, 13, 57392-57402.

9. Y. Zhang, Y. Qiu, Y. Wang, B. Li, Y. Zhang, Z. Ma and S. Liu, *ACS Appl. Mater*. *Interfaces*, 2021, **13**, 3937-3948.

10. C. Gu, G. Zhou, J. Yang, H. Pang, M. Zhang, Q. Zhao, X. Gu, S. Tian, J. Zhang, L. Xu and Y. Tang, *Chem. Eng. J.*, 2022, **443**, 136321.

11. W. Yuan, T. Jiang, X. Fang, Y. Fan, S. Qian, Y. Gao, N. Cheng, H. Xue and J. Tian, *Chem. Eng. J.*, 2022, **439**, 135743.

12. X. Xu, S. Ji, H. Wang, X. Wang, V. Linkov and R. Wang, J. Colloid Interface Sci., 2022, 615, 163-172.

13. Q. Zhao, C. Meng, D. Kong, Y. Wang, H. Hu, X. Chen, Y. Han, X. Chen, Y. Zhou, M. Lin and M. Wu, *ACS Sustain. Chem. Eng.*, 2021, **9**, 15582-15590.

14. Z. Lv, Z. Li, X. Tan, Z. Li, R. Wang, M. Wen, X. Liu, G. Wang, G. Xie and L. Jiang, *Appl. Surf. Sci.*, 2021, **552**, 149514.

15. H. Wang, X. Jiao, W. Zeng, Y. Zhang and Y. Jiao, *Int. J. Hydrogen Energ.*, 2021, **46**, 37792-37801.