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1 Equation learning convergence
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Figure 1: Equation learning framework applied to synthetic data with Ωs(N, t) = d0 − d1N . (a)-(c) Com-
parison between the neural network prediction of the number of associated particles per cell (orange) and
the test dataset (black). (d)-(f) Convergence of the neural network to the training dataset (grey) and the
validation dataset (purple). The dataset contains 2,500 observations at each of (a),(b),(d),(e) 25 and (c),(f) 7
time points with Gaussian noise with a mean of zero and a standard deviation of (a),(d) 10−4, (b),(c),(e),(f)
0.5.

We demonstrate that the neural network output matches the test dataset, and that the neural network
converges to both the training and validation datasets in Figure 1 for the synthetic dataset generated with
Ωs(N, t) = d0−d1N for different numbers of observations and different levels of noise. The equation learning
prediction of the test data and the rate of particle-cell association can be found in Figure 2 in the main
document.

We again demonstrate that the neural network output matches the test dataset, and that the neural
network converges to both the training and validation datasets in Figure 2 for the synthetic dataset generated
with either Ωs(N, t) = d0 − d1N − d2N2 (Figures 2(a)-(b)) or Ωs(N, t) = d0 − d1N − d2N2 − d3N3 (Figures
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Figure 2: Equation learning framework applied to synthetic data with (a)-(b) Ωs(N, t) = d0 − d1N − d2N2

and (c)-(d) Ωs(N, t) = d0− d1N − d2N2− d3N3. (a),(c) Comparison between the neural network prediction
of the number of associated particles per cell (orange) and the test dataset (black). (b),(d) Convergence of
the neural network to the training dataset (grey) and the validation dataset (purple). The dataset contains
2,500 observations at each of 7 time points with Gaussian noise with a mean of zero and a standard deviation
of (a)-(b) 0.5 and (c)-(d) 3.

2(c)-(d)). These results corresponds to the results presented in Figure 3 of the main document, where the
equation learning prediction of the test data and association are shown.

2 Learned model parameters

As discussed in the main document, the learned model

ΩL(N, t) = d0 − d1N − d2N2 − ...− dmNm,

can be recast into a form that contains key metrics of particle performance

ΩL(N, t) = αC0SA

(
1− δ1

(
N

K

)
− δ2

(
N

K

)2

− . . .− δm
(
N

K

)m
)
,

where α is particle-cell affinity (m/s), C0 is the initial particle concentration (m−3), SA is the surface area
of the relevant cell type (m2), K is the cell carrying capacity and δi is the relevant contribution of the ith
component, subject to

∑
i δi = 1. The δi and di terms are related via

di =
αC0SA
Ki

δi.

The benefit of the recast form is that α and K have been previously identified as relevant metrics of particle
performance, and the values of the δi allows for the relative contributions of the ith order saturation effect
to be measured. We present the learned model parameters for the hyperbranched polymer particles in Table
1, and for the poly(methacrylic acid) particles in Table 2. We note that the cell carrying capacity value
changes with the particle concentration for the hyperbranched polymer particles, which may suggest that the
saturation in the number of associated particles per cell is due to a balance between particle-cell association
and either particle recycling or particle degradation; however, we do not speculate on the precise biological
mechanism here.
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Figure 3: Illustrative examples of the change in the rate of particle-cell association as a function of the
number of associated particles per cell for Model 1 (grey), Model 2 (purple), Model 3 (orange), and Model 4
(cyan). We observe that saturation effects are critical, as the rate of particle-cell association decreases with
the number of particles per cell in each learned model.

3 Learned model transferability

A key question in machine learning is whether a learned model can be employed to describe data that the
model was not trained on. To examine this, we take the most common learned model (Model 2) and deter-
mine whether the model can be used to describe datasets that have not been used previously in this study.
These datasets include a comparison of the internalisation of carbon particles (fullerenes) at 10 µM and 25
µM concentrations by mammary carcinoma cells (MCF-7) [8]; a comparison of the cellular uptake of 20 nm
amorphous silica particles for gastric cancer cells (MGC80-3) and cervical adenocarcinoma epithelial cells
(HeLa) [10], and; a comparison of the association of metal phenolic network (MPN) particles with hyaluronic
acid targeting ligands to human breast adenocarcinoma cells (MDA-MB-231) and human breast ductal car-
cinoma cells (BT-474) [7]. Full experimental details can be found in the previous literature for the carbon
particles study [8], the amorphous silica particles study [10], and the hyaluronic acid MPN particles study [7].

For each dataset we fit Model 2 to the data via nonlinear least squares, and present a comparison
between the experimental data and the model prediction in Figure 4. We observe that Model 2 is capable
of describing each of the experimental datasets. This suggests that Model 2 is transferable and can be used
beyond the datasets on which it was trained. Interestingly, for the datasets in Figures 4(d) and 4(e), Model
1 performs equally well as Model 2. This is consistent with our previous observation that Model 1 can be
the most appropriate model to describe particle-cell association data.

4 Two-stage binding model

The processes by which nano-engineered particles are internalised are complicated, such that a single ordi-
nary differential equation model of particle internalisation is unlikely to capture all of the relevant details.
For example, numerous authors have presented models that represent the internalisation process as a two-
stage process, where a particle first binds to the surface of a cell (via a receptor or a non-specific membrane

5
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binding) and is subsequently internalised [1, 2, 3, 9]. These models can be represented mathematically as

dB(t)

dt
= ΩB(B(t), I(t))− ΩI(B(t), I(t)),

dI(t)

dt
= ΩI(B(t), I(t)),

where B(t) is the average number of bound particles at time t, I(t) is the average number of internalised
particles at time t, ΩB(B(t), I(t)) is a function that describes the rate of particles binding to the cell and
ΩI(B(t), I(t)) is a function that describes the rate of bound particles becoming internalised. Under appro-
priate choices of ΩB(B(t), I(t)) and ΩI(B(t), I(t)), it is straightforward to solve these equations to obtain
predictions of B(t) and I(t). However, identifying ΩB(B(t), I(t)) and ΩI(B(t), I(t)) requires that bound and
internalised particles can be distinguished. As various authors have discussed, this is not standard practice,
and there are many issues that can be introduced via the choice of experimental techniques employed to
distinguish between bound and internalised particles [5, 6].

Nonetheless, the difficulty of obtaining experimental data does not preclude examining whether the
equation learning framework is capable of identifying the correct model. To achieve this, we can gener-
ate synthetic data from the above model, similar to the approach employed in Section 3.1 of the main
manuscript. We can use this data to determine whether the equation learning framework can identify the
forms of ΩB(B(t), I(t)) and ΩI(B(t), I(t)) when provided with data generated according to those choices of
ΩB(B(t), I(t)) and ΩI(B(t), I(t)). We note that this approach will, in general, not work if the only data
available is the number of associated particles (i.e. N(t) = B(t) + I(t)). This can be seen through

dN(t)

dt
=

dB(t)

dt
+

dI(t)

dt
= ΩB(B(t), I(t)),

which is independent of the function representing internalisation, ΩI(B(t), I(t)). Moreover, ΩB(B(t), I(t))
may depend on both the number of bound and internalised particles, rather than the sum of the two, and
this information is not present in the data.

We modify the equation learning framework such that it constructs m = (n + 1)2 model components
Ω = {ω1(Bp, Ip, t), . . . , ωm(Bp, Ip, t)}. That is, the model components depend on the observations of both
the number of bound and internalised particles. We choose model components that are polynomial terms
of the form Bp(t)

aIp(t)
b for 0 ≤ a ≤ n and 0 ≤ b ≤ n. We employ the following assumptions for the two

neural networks:

• The numbers of both bound and internalised particles are non-negative.

• The rates of particle binding and particle internalisation are non-negative.

We do not include any assumptions about the presence of saturation effects, unlike for the single species
model, as it is feasible that the rate of particle internalisation may increase with the number of bound
particles. It is straightforward to constrain the neural network to produce such output. We employ a single
hidden layer with a sigmoid activation function and non-negative biases and weights, alongside a linear
output layer with a non-negative bias and weight [4].

Results

We generate data from the two-stage binding model by first selecting ΩB
s (B(t), I(t)) = d0−d1B(t)−d2B2(t)

and ΩI
s(B(t), I(t)) = d3B(t)+d4B

2(t). This represents an internalisation process where particle binding can
saturate but particle internalisation does not saturate [1, 2, 3, 9]. As in Section 2.1 in the main manuscript,
we generate synthetic data at time points corresponding to every hour over a total of 24 hours. We apply
the modified equation learning framework to the synthetically-generated data and present the results in
Figure 5. We first see that the learned model describes the test data accurately for both the bound and
internalised particles. Crucially, we observe that the model learned from the data is of the correct form,
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Figure 5: Equation learning framework applied to synthetic data with (a)-(b) ΩB
s (B, I, t) = d0 − d1B(t) −

d2B
2(t) and ΩI(B(t), I(t)) = d3B(t) + d4B

2(t) and (c)-(d) ΩB
s (B, I, t) = d0 − d1B(t) + d2B(t)I(t) and

ΩI(B(t), I(t)) = d3B(t)− d4B(t)I(t). Comparison between the equation learning prediction (cyan) and the
test dataset (black) of the number of (a),(c) bound particles per cell and (b),(d) internalised particles per
cell. The dataset contains 500 observations at each of 25 time points with Gaussian noise with a mean of
zero and a standard deviation of 10−4. Here we choose n = 5.
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that is, ΩB
L (B(t), I(t)) = d0 − d1B(t)− d2B2(t) and ΩI

L(B(t), I(t)) = d3B(t) + d4B
2(t).

We next generate data from the two-stage binding model according to ΩB
s (B(t), I(t)) = d0 − d1B(t) +

d2B(t)I(t) and ΩI
s(B(t), I(t)) = d3B(t) − d4B(t)I(t). This represents an internalisation process where

particle internalisation can saturate but particle binding does not saturate. We present the results obtained
from the modified equation learning framework when applied to this synthetic data. Again, we observe
that we obtain a close match between the test data and the learned model. Further, the learned model
is of the form ΩB

LB(t), I(t)) = d0 − d1B(t) + d2B(t)I(t) and ΩI
L(B(t), I(t)) = d3B(t) − d4B(t)I(t), and

hence matches the model used to generate the data. This indicates that the modified form of the equation
learning framework is able to identify the correct model when data on both internalised and bound particles
is available. Importantly, we also see that the equation learning framework can identify models when the
constraints on the neural network are relaxed, as we observe that the first derivative of the number of bound
particles is non-monotonic (i.e. it both increases and decreases) in Figure 5(c).
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