Supporting information

Stable and efficient soft perovskite crystalline film based solar cells with a facile encapsulation method

Diksha Thakur^{1,3}, Qi Bin Ke^{1,2,3}, Shou-En Chiang^{1,2,3}, Tzu-Han Tseng¹, Kun-Bin Cai¹,

Chi-Tsu Yuan^{1,2}, Jyh-Shyang Wang^{1,2}, Sheng Hsiung Chang^{1,2,3,*}

¹Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan,

ROC

²Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan

Christian University, Taoyuan 320314, Taiwan, ROC

³Center for Nanotechnology and R&D Center for Membrane Technology, Chung

Yuan Christian University, Taoyuan 320314, Taiwan, ROC

*<u>shchang@cycu.edu.tw</u>

Corresponding authors: Sheng Hsiung Chang

Telephone: +886-3-2653208

Fax: 886-3-2653299

Optical layout of the reflectance spectrometer

Fig. S1. Optical layout of the reflectance spectrometer. The light source (SLS301, Thorlabs) emits a broadband spectrum (360 nm - 3800 nm). The beam splitter (BS) is used to collect the reflected beam from the sample (or Ag mirror). The lens is used to collimate the light source. The Ag mirror is used as the reference of the reflectance spectrum. The Ag mirror and sample are mounted on a motorized linear stage with two mirror mounts. The iris is used to reduce the optical noise. The optical spectrometer (Mars TB3000+, GIE) is used to measure the spectrum of the reflected beam.

Day-dependent R_S of the inverted perovskite solar cells

Fig. S2. Day-dependent series resistance (Rs) of the inverted perovskite solar cells. The sample was encapsulated on the second day.

Schematic diagram of the MAPbI₃/P3CT-Na/ITO tri-layer structure

Fig. S3. Schematic diagrams of the MAPbI₃/P3CT-Na/ITO tri-layer structure with the different atomic contact distances.

Day-dependent PCE of the inverted MAPbI₃ solar cells with and without the

encapsulation method

Fig. S4. Day-dependent PCE of the inverted $MAPbI_3$ solar cells with and without the facile encapsulation method.

Atomic-force microscopic images

Fig. S5. Atomic-force microscopic images. (a) MAPbI₃/P3CT-Na/ITO/glass; (b) BCP:PCBM/MAPbI₃/P3CT-Na/ITO/glass.

X-ray diffraction patterns

Fig. S6. X-ray diffraction patterns of the MAPbI₃/P3CT-Na/ITO/glass and BCP:PCBM/MAPbI₃/P3CT-Na/ITO/glass samples.