Efficient Interlayer Confined Nitrate Reduction Reaction and Oxygen Generation Enabled by Interlayer Expansion

Ye Zhang,^{a,†} Mengqiu Xu,^{a,†} Xudong Xu,^a Xiaoyu Li,^a Genping Zhu,^{*a} Gan Jia,^a Bingchuan Yang,^{*b,c} Ruilian Yin,^d Peng Gao,^a and Wei Ye^{*a}

 ^a College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
E-mail: yewei@hznu.edu.cn; zhugenping@hznu.edu.cn

^b School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, China.

E-mail: yangbingchuan@lcu.edu.cn

^c School of Chemistry and Chemical Engineering, Shandong University, Jinan,
250100, China.

^d College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.

[†]These authors contribute equally.

Fig. S1 AFM image of single α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheet.

Fig. S2 (a,b) SEM images of α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets.

Fig. S3 TEM images of α -Ni_{1-x}Fe_x(OH)₂ nanosheets with different Fe doping levels: (a) x=0, (b) x=0.053, (c) x=0.098, (d) x=0.119, (e) x=0.150, (f) x=0.171.

Fig. S4 Nitrogen adsorption-desorption curves and pore size distributions curves of (a,b) α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets and (c,d) α -Ni(OH)₂ nanosheets.

Fig. S5 XPS survey of α -Ni_{0.881}Fe_{0.119}(OH)₂ sample.

Fig. S6 (a) UV-vis absorption spectra based on spectrophotometry of Nessler's reagent and (b) NH₃ concentration-absorbance curve at 420 nm of standard NH₃ solutions with a series of concentrations. (c) UV-vis absorption spectra for α -Ni_{1-x}Fe_x(OH)₂ samples acquired at -0.6 V. (d) UV-vis absorption spectra for α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets acquired at -0.6 to -0.1 V.

Fig. S7 (a) UV-vis absorption spectra based on spectrophotometry of indophenol blue method and (b) NH₃ concentration-absorbance curve at 655 nm of standard NH₃ solutions with a series of concentrations. (c) NH₃ yield rates and NO₃⁻-to-NH₃ FEs of α -Ni_{1-x}Fe_x(OH)₂ nanosheets at -0.6 V. (d) Potential-dependent NH₃ yield rates and FEs of α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets.

Fig. S8 The comparison of LSV curves for α -Ni_{0.881}Fe_{0.119}(OH)₂ and pristine α -Ni(OH)₂ nanosheets recorded in KOH or the mixture of KNO₃ + KOH.

Fig. S9 (a) NH₃ yield rate and Faradaic efficiency for α -Ni_{0.881}Fe_{0.119}(OH)₂ sample recorded at -0.7 V. (b) XRD pattern of α -Ni_{0.881}Fe_{0.119}(OH)₂ after electrochemical catalysis at -0.7 V.

Fig. S10 Potential-dependent NH_3 production rates and FEs for α -Ni(OH)₂ nanosheets.

Fig. S11 (a) UV-vis absorption spectra and (b) concentration-absorbance curve of NO_2^- solutions with a series of standard concentrations.

Fig. S12 Working curves for the determination of produced amount of (a) H_2 and (b) N_2 .

Fig. S13 (a) TEM image and (b) XRD pattern of α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets after catalysis.

Fig. S14 (a) NH₃ yield rates and FEs of α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets at (a) different concentrations of NO₃⁻ and (b) pH.

Fig. S15 (a) XRD pattern and (b) SEM image of α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets arrays grown on nickel foam.

Fig. S16 (a) the NTRR and (b) OER performance of α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheet arrays on nickel foam.

Fig. S17 *I-t* curves using α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets as (a) cathodic catalyst and (b) bifunctional catalyst.

Fig. S18 *I-t* curves using α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets as bifunctional catalyst or cathodic catalyst and the corresponding energy efficiencies.

Fig. 19 Cyclic voltammetry curves recorded at different scan rates (20-140 mV s⁻¹): (a) α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets, (b) pristine α -Ni(OH)₂ nanosheets. (c) Comparative C_{dl} for α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets and α -Ni(OH)₂ nanosheets derived from CV curves with different scan rates.

Fig. S20 EIS Nyquist plots for α -Ni_{1-x}Fe_x(OH)₂ nanosheets with different Fe doping levels (x=0, 0.053, 0.098, 0.119, 0.150, 0.171).

Fig. S21 Schematic illustration of atomic layer deposition to block the outmost layers of the layered α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets.

Fig. S22 K 2p spectrum of $\alpha\text{-Ni}_{0.881}\text{Fe}_{0.119}(\text{OH})_2$ samples after NTRR test.

Fig S23. Zeta potentials of α -Ni_{0.881}Fe_{0.119}(OH)₂ nanosheets before or after catalysis.

Ni/Fe ratios	Х
1:0.1	0.053
1:0.2	0.098
1:0.3	0.119
1:0.4	0.150
1:0.5	0.171

Table S1. The mole ratios of Ni/Fe in the precursors and the corresponding x in the final α -Ni_{1-x}Fe_x(OH)₂ samples.