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I. SUPPLEMENTARY INFORMATION

Figure S1: The conductivity data vs temperature in semi-logarithmic scale is plotted in Figure 1. This is the
same data shown in the main body in Fig. 3(a). This semi-logarithmic plot clearly shows the insulating behavior of
the MoSe2 at low applied gate voltage, V bg, where the conductivity decreases with decreasing temperature. When
the gate voltage increased the slope of the conductivity changed, and above a certain threshold of applied voltage
(marking a critical density of charge carriers induced by the applied gate voltage) the slope of the conductivity data
changed sign compared to the insulating phase conductivity.

FIG. S1: Conductivity measured using 4-terminal method plotted as function of temperature in semi-logarithmic
scale. The sample became too resistive to measure below 50 K for V bg = 65 V
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FIG. S2: (left) Conductivity, σ, curves normalized by the critical conductivity σc(T, V bg =95 V, depicted by the
dashed line) at the critical carrier density nc = n(V bg = 95 V) as functions of the temperature T. (right) Plotting
the rescaled conductivity, σ/σc as a function of the rescaled temperature, T/T 0, showed no collapse of the
conductivity curves to a single line that would indicate a quantum-critical aspect of the phase transition.

Figure S2: We plotted the temperature-dependent conductivity, σ, by normalizing all the curves with the critical
conductivity value, σc, shown in Fig. 2 (left). Critical conductivity σc is represented by a dashed line which separates
the insulating branch of the conductivity (below σc) and the metallic branch of the conductivity (above σc). In
a quantum phase transition (QPT), the material undergoes a phase transition at T=0 K. The QPT occurs at the
quantum critical point, which is where quantum fluctuations drive the transition to diverge and become scale-invariant
in space and time. Experimentally, the two branches of the conductivity should scale with a temperature parameter,
T o, in such a way that

To ∝ δnzν (1)

where δn = (n−nc

nc
). z and ν are the dynamic and correlation exponents, respectively. This suggests that the two

branches of the conductivity should collapse into a single curve with appropriate T o values. As demonstrated from
the fitting of Fig. 2 (right), we have not established any collapse of the conductivity curves on either branch, which
indicated that our phase transition did not exhibit quantum criticality.


