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Analytic expression for chirality density

The local chirality density for L/RCP waves of frequency ω in a medium characterized

by permittivity ε and permeability µ is given by the expression

C(r, ω) = −ω
2
Im
{
D∗(r, ω) ·B(r, ω)

}
= − ω

2c2
Im
{

(ε∗µ) E∗(r, ω) ·H(r, ω)
}
, (S.1)

where E is the electric field, B the magnetic induction, D the displacement field, H the

magnetic field and c the speed of light in vaccum. In Fig. 1(c) of the main text we calculate

the chirality density inside an achiral high-index dielectric nanoparticle (NP) of radius R,

integrated over the volume of the particle

C(ω) =

∫ R

0

drr2
∫
dΩC(r, ω) = − ω

2c2
Im
{

(ε∗µ)

∫
drr2

∫
dΩ E∗(r, ω) ·H(r, ω)

}
, (S.2)

with dΩ denoting the differential solid angle. The fields inside the NP can be expressed in

terms of vector spherical harmonics Xlm(θ, φ) [1]

E(r, ω) =
∑
lm

[
aHlmjl(kr)Xlm(θ, φ) +

i

k
aElm∇× jl(kr)Xlm(θ, φ)

]
(S.3a)

H(r, ω) =
1

Z

∑
lm

[
aElmjl(kr)Xlm(θ, φ)− i

k
aHlm∇× jl(kr)Xlm(θ, φ)

]
, (S.3b)

where l,m are the angular momentum indices, k = ω/c
√
εµ is the wavenumber and Z =√

µµ0/(εε0) the impedance in the medium, jl is the spherical Bessel function of the first kind

and aE/H
lm are expansion coefficients that can be found by solving the boundary conditions

of the problem, as in standard Mie theory [2]. Substitution of eqn (S.3) in eqn (S.2) gives

C(ω) = − ω

2c2

∑
lm

Im
{ε∗µ
Z

[
aH∗
lm a

E
lmI1lm − aE∗

lma
H
lmI2lm

]}
, (S.4)

with

I1lm =

∫ R

0

drr2
∣∣jl(kr)∣∣2 (S.5a)

I2lm =
1

|k|2
{∫ R

0

dr l(l + 1)
∣∣jl(kr)∣∣2 +

∣∣Rjl(kR)
∣∣2}. (S.5b)

In Figs. 1(c), 2(e) and (f) of the main text, we normalize the chirality density to its value

for L/RCP waves in bulk media, where HL/R = ∓iEL/R/Z, therefore

C
L/R
bulk (r, ω) = ± ω

2c2
Re
{ε∗µ
Z

}
. (S.6)

For the volume-averaged values CL/Rbulk (ω) one need simply multiply with the volume of the

NP.
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Differential Scattering (DS) and Circular Dichroism (CD)

Fig. S.1 shows the DS and CD spectra for an uncoated chiral sphere of radius R = 85 nm.

and permittivity ε = 12.1 + 0.001i in air. For a real-valued κ = 0.001, the CD signal

[Fig. S.1(c)] is very low, of the order of 10−5, that is two orders of magnitude lower than DS

[Fig. S.1(a)]. Comparison with Fig. 3(c) of the main text, which shows the CD of the coupled

chiral sphere, provides evidence that the excitonic material can increase the CD signal by

two orders of magnitude, due to its resonant nature, even though it is itself achiral.
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FIG. S.1. (a-b) Differential scattering (DS) and (c-d) circular dichroism (CD) spectra of an uncoated

chiral NP of radius R = 85 nm and permittivity ε = 12.1 + 0.001i for a real Pasteur parameter

κ = 0.001 (a,c), and for an imaginary κ = 0.001i (b,d) .

On the other hand, an imaginary-valued κ = 0.001i produces a higher CD signal

[Fig. S.1(d)], of the same order of magnitude as the DS spectrum of the same structure

[Fig. S.1(b)]. In this case, as shown in Fig. 3(d) in the main text, the excitonic shell leads to

the splitting of the resonant feature, here the magnetic dipolar (MD) mode, when operating

within the strong coupling regime. Excitonic materials can thus be employed either to

enhance the chiroptical response of a nanostructure or to quantitatively reconfigure spectral

features. The splitting itself can be tailored through the optical characteristics of the exci-
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tonic material. For example, Fig. S.2 shows the widening of the splitting in both DS and

CD spectra of the chiral sphere with real-valued κ = 0.001, as the oscillator strength of the

excitonic shell increases.
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FIG. S.2. (a) DS and (b) CD spectra of the chiral (κ = 0.001) NP coated with the excitonic shell

tuned at transition energy h̄ωexc = 1.88 eV as a function of the oscillator strength f . Dashed white

lines serve as guides to the eye for tracing the energy of the excitonic resonance.

Strong coupling study

To confirm that the coupled NP studied in the main text operates in the strong coupling

regime we examine the standard criterion that the coupling strength g, which is proportional

to the splitting of the MD mode, is larger than a critical value determined by the damping

rates of the two resonant systems individually [3]. This condition quantifies as

2g >

√
γ2exc + γ2MD

2
. (S.7)

To determine the damping rate of the MD mode of the uncoupled NP, we fit the con-

tribution as calculated by Mie theory with a sum of two Lorentzian curves to account for

the asymmetry of the mode. This asymmetry is owed to contributions of higher radial or-

der modes which are captured by the broad Lorentz curve illustrated with a green line in

Fig. S.3(a). The damping rate of the MD mode that couples to the excitonic resonance

corresponds to the linewidth of the Lorentzian curve centered at around 2 eV, which we find

to be h̄γMD = 0.15 eV.
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FIG. S.3. (a) The magnetic dipolar contribution to extinction cross section of the uncoated achiral

NP of radius R = 85 nm and permittivity ε = 12.1 + 0.001i (black circles) is fitted by the sum of

the two Lorentzian lineshapes (blue and green line). The total fit (red line) reproduces well the

linewidth of the magnetic dipole. (b) The magnetic dipolar contribution to extinction cross section

of the same NP as in (a), coated with an excitonic shell of transition energy h̄ωexc = 1.88 eV,

damping h̄γexc = 0.05 eV, oscillator strength f = 0.2 and background permittivity εb = 3 (black

circles). The coupling strength of the two-layered NP is extracted by fitting with a system of two

coupled harmonic oscillators (red line).

The coupled system can be described by a two-coupled-oscillators model. The equations

of motion of the bound charges in the NP and the excitons in the excitonic shell are given

by the system

ẍMD(t) + γMDẋMD(t) + ω2
MDxMD(t) + gẋexc(t) = F (t) (S.8a)

ẍexc(t) + γexcẋexc(t) + ω2
excxexc(t)− gẋMD(t) = 0. (S.8b)

The extinction cross section is proportional to the work done by the force F driving the

bound charges of the NP due to the incident electric field [4]

σext ∝ 〈F (t)ẋMD(t)〉 ∝ ω Im

(
ω2
exc − ω2 − iγexcω

(ω2
exc − ω2 − iγexcω)(ω2

MD − ω2 − iγMDω)− g2ω2

)
, (S.9)

where the angle brackets denote the average over a period of the oscillation. In Fig. S.3(b) we

fit the extinction cross section spectrum of the coupled NP (black circles) with eqn (S.9) (red

line) and find the coupling strength h̄g = 0.18 eV. This value satisfies the strong coupling

5



criterion of eqn (S.7), 2h̄g = 0.36 eV >
√

(h̄γexc)2/2 + (h̄γMD)2/2 = 0.11 eV, and therefore

confirms that the system is strongly coupled.

Numerical simulations

The optical properties of the Ag NP helices (for geometrical details see main text) are

simulated with commercial finite-element-method (FEM) software (Comsol Multiphysics

5.4). Each sphere is meshed with 15, 000 domain elements (distributed more densely near

the gap between two NPs), while the excitonic matrix is meshed with 3, 000 elements. The

simulation domain is a cube of side 400 nm, while perfectly-matched layers (PMLs) of thick-

ness 400 nm are used on all sides of the domain. The domain is illuminated by a plane

wave with x and y components of equal amplitude and phase difference π/2, and the full-

field/scattered-field formulation is employed. Scattering and absorption cross sections are

obtained by integrating the Poynting flux through the surface of the excitonic ellipsoidal

matrix.
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