Supplementary Information

Towards Graphene Semi/Hybrid-Nanogap: A New Architecture for Ultrafast DNA Sequencing

Sneha Mittal, † Biswarup Pathak*, †

[†]Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India *E meil: biowerun@iiti.co.in

*E-mail: <u>biswarup@iiti.ac.in</u>

CONTENTS

- 1. Representative in-plane rotation orientations of A-nucleobase inside the graphene semi/hybrid-nanogap.
- 2. TDOS plot for pristine graphene semi/hybrid-nanogap device at three different k-points.
- **3.** Top and side views of energetically stable structures of graphene semi/hybridnanogap+nucleobase analog (1dzC and 3dzT) systems.
- **4.** Change in the transmission function spectra of graphene semi/hybrid-nanogap+pyrimidine nucleobase systems due to highly conductive analogs.
- 5. Scheme of A-nucleobase translated inplane along the z-axis in both positive and negative directions by ± 0.5 Å inside the graphene semi/hybrid-nanogap.
- 6. Scheme of A-nucleobase translated out-of-plane along the x-axis in positive and negative directions by ± 1.0 Å inside the graphene semi/hybrid-nanogap.
- **7.** Variation in the transmission function spectra of graphene semi/hybrid nanogap+nucleobase systems due to in-plane rotations.
- **8.** Change in the transmission spectra of graphene semi/hybrid-nanogap+nucleobase systems due to in-plane lateral translations.
- **9.** Change in the transmission spectra of graphene semi/hybrid-nanogap+nucleobase systems due to out-of-plane translations.

1. Representative in-plane rotation orientations of A-nucleobase inside the graphene semi/hybrid-nanogap:

Scheme S1: Rotation of A-nucleobase inside the graphene semi/hybrid-nanogap: We have considered all possible rotations from 0° to 180° around the x-axis in the yz-plane for all four DNA nucleobases inside the graphene semi/hybrid-nanogap as shown in **Figure S1**.

Figure S1: Representative orientations of A-nucleobase inside the graphene semi/hybrid-nanogap are illustrated, corresponding to rotations from 0° to 180° in the steps of 30° around the x-axis in the yz-plane.

Table S1. Relative energies (in eV) of the graphene semi/hybrid-nanogap+nucleobase systems when nucleobases are interacting with graphene semi/hybrid-nanogap edges at different orientations (0° to 180°), as shown in **Figure S1**.

Nucleobases	00	300	60 ⁰	90 ⁰	1200	150 ⁰	180 ⁰
А	0.00	0.44	0.49	0.55	0.03	0.09	0.04
G	0.13	0.73	0.39	0.00	0.50	1.09	1.21
С	0.08	0.27	0.00	0.01	0.06	0.73	0.85
Т	0.17	0.57	0.63	0.64	0.47	0.00	0.43

2. Total density of states (TDOS) plot for pristine graphene semi/hybrid-nanogap device at different k-points:

Figure S2: TDOS plot for pristine graphene semi/hybrid-nanogap device at three different k-points: $1\times3\times2$, $1\times6\times4$, and $1\times9\times6$. The Fermi energy level (E-E_F) has been aligned to zero.

3. Top and side views of energetically stable structures of graphene semi/hybridnanogap+nucleobase-analog (1dzC and 3dzT) systems:

Figure S3. Top and side views of energetically stable structures of graphene semi/hybridnanogap+nucleobase-analog (1dzC and 3dzT) systems. Brown, white, blue, and red balls represent C, H, N, and O atoms, respectively.

4. Change in the zero-bias transmission spectra of graphene semi/hybrid nanogap+pyrimidine nucleobase systems due to highly conductive analogs:

Figure S4. (a) Variation in the zero-bias transmission spectra of C when replaced by the analog 1dzC and **(b)** variation in the zero-bias transmission spectra of T when replaced by the analog 3dzT. The Fermi level has been set to zero.

5. Representative lateral translations of A-nucleobase inside the graphene semi/hybridnanogap:

Scheme S2: Lateral translations of A-nucleobase inside the graphene semi/hybrid-nanogap: We have translated all four nucleobases in both forward (+0.5Å) and backward (-0.5Å) directions from the initial position (0.0 Å) inside the graphene semi/hybrid-nanogap as shown in **Figure S5**.

Figure S5: Scheme of A-nucleobase translated inplane along the z-axis in positive and negative directions by ± 0.5 Å inside the graphene semi/hybrid-nanogap in the xy-plane.

6. Scheme of A-nucleobase translated out-of-plane along the x-axis in positive and negative directions by ± 1.0 Å inside the graphene semi/hybrid-nanogap:

Scheme S3: Out-of-plane translation of A-nucleobase inside the graphene semi/hybridnanogap: We have translated all four DNA nucleobases in both upward (+1.0 Å) and downward (-1.0 Å) directions from the initial position (0.0 Å) along the x-axis in the yz-plane inside the graphene semi/hybrid-nanogap as shown in **Figure S6**.

Figure S6: Scheme of A-nucleobase translated out-of-plane inside the graphene semi/hybridnanogap along the x-axis in positive and negative directions by ± 1.0 Å.

7. Variation in the transmission Spectra of graphene semi/hybrid-nanogap+nucleobase systems due to in-plane rotations from 0° to 180° in the step of 30° along the *x*-axis in the yz-plane:

Figure S7. Variation in the transmission spectra due to in-plane rotation from 0° to 180° in steps of 30° along the *x*-axis in the yz-plane for all four nucleobases (A, G, C, T).

8. Change in the transmission function spectra of graphene semi/hybridnanogap+nucleobase systems due to in-plane lateral translations:

Figure S8. The change in the transmission function for each targeted nucleobase due to lateral inplane translations (± 0.5 Å).

9. Change in the transmission spectra of graphene semi/hybrid-nanogap+nucleobase systems due to out-of-plane translations:

Figure S9. The change in the transmission function for each targeted nucleobase due to out-ofplane translations (± 1.0 Å).