Supporting Information

Interfacing MnO and FeCo alloy inside N-doped carbon hierarchical porous nanospheres derived from metal-organic framework boosts high-performance oxygen reduction for Zn-air batteries

Xinde Duan¹, Minqi Xia², Xixi Hu³, Lijun Yang² and Hegen Zheng^{1*}

¹State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China

²Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China

³Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210023, PR China

* Corresponding author

E-mail: zhenghg@nju.edu.cn

Reaction free energy calculation details

The ORR pathway was calculated according to the framework developed by Nørskov.^[1] In an alkaline electrolyte (pH=13), the overall reaction can be written as:

$$O_2(g) + 2H_2O + 4e^- \rightleftharpoons 4OH^-(aq) \tag{1}$$

and the reaction proceeds through the following elementary steps:

$$O_2(g) + * + H_2O + e^- \rightleftharpoons * OOH + OH^-$$
 (2)

$$* 00H + e^{-} \rightleftharpoons * 0 + 0H^{-}$$
(3)

$$* 0 + H_2 0 + e^- \rightleftharpoons * 0H + 0H^-$$
(4)

$$* OH + e^{-} \rightleftharpoons * + OH^{-} \tag{5}$$

For each elementary step, the Gibbs reaction free energy ΔG is defined as:

$$\Delta G = \Delta E + \Delta ZPE - T\Delta S + \Delta G_{\rm U} + \Delta G_{\rm pH} \tag{6}$$

where ΔE is the energy difference between reactants and products, ΔZPE and ΔS are the change in zero point energies and entropy at temperature T. ΔG_U , which results from electron transferring under electrode potential, is calculated by:

$$\Delta G_{\rm U} = -neU \tag{7}$$

where U is the applied electrode potential relative to SHE and n is the number of proton– electron pairs transferred. ΔG_{pH} is the correction of the H⁺ free energy, which is calculated by:

$$\Delta G_{\rm pH} = -k_B T \ln[{\rm H}^+] = 0.0592 \rm{pH}$$
(8)

where k_B is the Boltzmann constant. Hence, the equilibrium potential U_0 for ORR at pH=13 is determined to be 0.461V versus SHE.

As the free energy of oxygen molecule can not be described precisely in DFT, we derived $G_{0_2}(g)$ according to the equation:

$$G_{0_2}(g) = 2G_{H_20}(l) - G_{H_2} + 4 \times 1.23 \text{ (eV)}$$
 (9)

where the gas-phase H_2O at 0.035 bar was used as reference state to calculate $G_{H_2O}(l)$ at 298.15K. The free energy of OH^- was derived as:

$$G_{\rm OH^-} = G_{\rm H_2\,O}(l) - G_{\rm H^+} \tag{10}$$

For ORR, the onset potential is calculated by:

$$U_{\text{ORR}}^{\text{onset}} = -\max\{\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4\}$$
(11)

where ΔG_1 to ΔG_4 corresponds to the reaction free energy of four elementary steps.

Figure S1. (a) The coordination modes of ligands and the coordination geometries of Mn^{2+} cations in Mn-MOF. (b) Views of accumulational architecture of Mn-MOF.

Figure S2. (a,c,e,g) SEM (200 nm) and (b,d,f,h) TEM (5 nm) images of (a,b) Mn-MOF, (c,d) Fe@Mn-MOF, (e,f) Co@Mn-MOF, and (g,h) CoFe@Mn-MOF.

Figure S3. PXRD patterns of Mn-MOF, Fe@Mn-MOF, Co@Mn-MOF, and CoFe@Mn-MOF.

Figure S4. Thermo-gravimetric plots of Mn-MOF, Fe@Mn-MOF, Co@Mn-MOF, and CoFe@Mn-MOF under N₂ from 25 to 600 °C with a heating rate of 10 °C min⁻¹.

Figure S5. (a,c,e,g,i) SEM (200 nm) and (b,d,f,h,j) TEM (5 nm) images of (a,b) M-NC, (c,d) FM-NC, (e,f) CM-NC, (g,h) CFM-NC-700, and (i,j) CFM-NC-900.

Figure S6. XPS spectra of CFM-NC-T.

Figure S7. The high-resolution C 1s (a), N 1s (b), O 1s (c) XPS spectra of CFM-NC-700.

Figure S8. The high-resolution C 1s (a), N 1s (b), O 1s (c) XPS spectra of CFM-NC-900.

Figure S9. CVs for CFM-NC-700 (a), CFM-NC-800 (b), and CFM-NC-900 (c) in the region of 0.95-1.05 V vs RHE. (d) The C_{dl} measured by taking CV at different scan rates.

Figure S10. Structures of oxygen intermediates (*OOH, *O and *OH) adsorbed on MnO model (atoms colored by blue, yellow, purple, red and white represent Mn, O and H atoms, respectively).

Figure S11. Structures of oxygen intermediates (*OOH, *O and *OH) adsorbed on Fe-MnO model (atoms colored by blue, yellow, purple, red and white represent Fe, Mn, O and H atoms, respectively).

Figure S12. Structures of oxygen intermediates (*OOH, *O and *OH) adsorbed on Co-MnO model (atoms colored by blue, yellow, purple, red and white represent Co, Mn, O and H atoms, respectively).

Figure S13. Structures of oxygen intermediates (*OOH, *O and *OH) adsorbed on CoFe-MnO model (atoms colored by blue, yellow, purple, red and white represent Co, Fe, Mn, O and H atoms, respectively).

Figure S14. Discharging curve of the primary ZAB catalyzed by pure Ni foam with an increasing current density of 1 mA cm⁻³.

Figure S15. SEM (a) and TEM (b) images of CFM-NC-800 in the rechargeable Zn-air batteries after 80 h.

Table S1. Selected bond lengths (Å) and angles (°) for Mn-MOF.

Mn-MOF					
Mn(1)-O(1)#1	2.179(3)	Mn(1)-O(1)	2.179(3)		
Mn(1)-N(4)#1	2.193(3)	Mn(1)-N(4)	2.193(3)		
Mn(1)-O(2)#1	2.223(4)	Mn(1)-O(2)	2.223(4)		
O(1)#1-Mn(1)-O(1)	180.00(11)	O(1)#1-Mn(1)-N(4)#1	89.98(12)		
O(1)-Mn(1)-N(4)#1	90.02(12)	O(1)#1-Mn(1)-N(4)	90.02(12)		
O(1)-Mn(1)-N(4)	89.98(12)	N(4)#1-Mn(1)-N(4)	180.00(3)		
O(1)#1-Mn(1)-O(2)#1	89.37(15)	O(1)-Mn(1)-O(2)#1	90.63(15)		
N(4)#1-Mn(1)-O(2)#1	93.81(12)	N(4)-Mn(1)-O(2)#1	86.19(12)		
O(1)#1-Mn(1)-O(2)	90.63(15)	O(1)-Mn(1)-O(2)	89.37(15)		
N(4)#1-Mn(1)-O(2)	86.19(12)	N(4)-Mn(1)-O(2)	93.81(12)		
O(2)#1-Mn(1)-O(2)	180.0				
Note: #1 -x,-y+1,-z					

Sample	BET (m^2/g)	Raman (I_G/I_D)
M-NC	934	0.82
CM-NC	894	0.84
FM-NC	565	0.87
CFM-NC-700	809	0.87
CFM-NC-800	662	0.88
CFM-NC-900	837	0.95

Table S2. BET and Raman analysis for samples.

Table S3. XPS spectra analysis for CFM-NC-T samples.

Sample	C1s (%)	N1s (%)	O1s (%)	Mn2p (%)
CFM-NC-700	87.9	2.1	9.4	0.6
CFM-NC-800	90.2	2.5	6.7	0.6
CFM-NC-900	95.3	1.2	2.9	0.6

Table S4. XPS spectra analysis for CFM-NC-*T* samples of N 1s signal.

Sample	Pyridinic-N	Pyrrolic-N	Graphitic-N	oxidized-N
CFM-NC-700	397.7 eV,	399.7 eV,	402.3 eV,	404.9 eV,
	70.2%	17.1%	2.6%	10.1%
CFM-NC-800	397.7 eV,	399.4 eV,	401.1 eV,	403.4 eV,
	44.5%	20.5%	10.9%	24.1%
CFM-NC-900	397.8 eV,	399.5 eV,	400.8 eV,	403.4 eV,
	33.7%	16.1%	30.6%	19.6%

Catalysts	E _{1/2} (V)	Tafel slope (mV dec ⁻¹)	Ref.
CFM-NC-800	0.86	87	This work
MnO ₂ /C	0.79	N.A.	[2]
A-MnO ₂	0.75	105	[3]
Mn3O4 NWs/GN/CNTs	0.84	101	[4]
MnO@Co-N/C	0.83	78	[5]
Mn/C-NO	0.86	N.A.	[6]
MnO _x /S-GC	0.82	81	[7]
Mn ₃ O ₄ /N-graphene	0.69	N.A.	[8]
N-carbon-MnO	0.76	N.A.	[9]
Ni-MnO/rGO aerogel	0.78	85	[10]
Mn _x O _y -NC	0.81	N.A.	[11]

Table S5. Comparison of the electrocatalytic activities of CFM-NC-800 with somerepresentative Mn-based ORR electrocatalysts reported in 0.1 M KOH solution.

Catalyst	Specific capacity	Peak power density	Ref.	
$(mAh g_{Zn}^{-1})$		$(\mathrm{mW}\ \mathrm{cm}^{-2})$		
CFM-NC-800	812@10 mA cm ⁻²	260	This work	
NiFe/NCNT	772@10 mA cm ⁻²	300.7	[12]	
3DOMCo@TiO _x N _y	697@20 mA cm ⁻²	110	[13]	
CoFe/NGCT	748@20 mA cm ⁻²	203	[14]	
CoSx/CoNC-800	770@10 mA cm ⁻²	103	[15]	
Co ₉ S ₈ /NSG	655@5 mA cm ⁻²	72.1	[16]	
NiFe@NCFs	$719@5 \text{ mA cm}^{-2}$	102	[17]	
NCS	636@10 mA cm ⁻²	160	[18]	
CoO-NSC-900	714@10 mA cm ⁻²	65	[19]	
MPZ-CC@CNT	860@25 mA cm ⁻²	162	[20]	

Table S6. The performance of liquid rechargeable Zn-air batteries with various ORR
 electrocatalysts reported in literature.

Reference

- J. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B, 2004, 108, 17886.
- J.X. Zhang, L.N. Zhou, J. Cheng, X. Yin, W.T. Kuang, Y.J. Li, *J. Mater. Chem.* A, 2019, 7, 4699.
- M. Jiang, C.P. Fu, J. Yang, Q. Liu, J. Zhang, B.D. Sun, *Energy Storage Materials*, 2018, 18, 34.
- 4 C.S. Li, Y. Sun, W.H. Lai, J.Z. Wang, S.L. Chou, ACS Appl. Mater. Interfaces, 2016, 8, 27710.
- 5 Y.N. Chen, Y.B. Guo, H.J. Cui, Z.J. Xie, X. Zhang, J.P. Wei, Z. Zhou, *J. Mater. Chem. A*, 2018, **6**, 9716.
- Y. Yang, K.T. Mao, S.Q. Gao, H. Huang, G.L. Xia, Z.Y. Lin, P. Jiang, C.L. Wang,
 H. Wang, Q.W. Chen, *Adv. Mater.*, 2018, **30**, 1801732.
- 7 Y. Gao, H. Zhao, D.J. Chen, C. Chen, F. Ciucci, *Carbon*, 2015, 94, 1028.
- 8 J.J. Duan, S. Chen, S. Dai, S.Z. Qiao, Adv. Funct. Mater., 2014, 24, 2072.
- 9 Y.H. Wang, X. Ding, F. Wang, J.Q. Li, S.Y. Song, H.J. Zhang, *Chem. Sci.*, 2016, 7, 4284.
- 10 G.T. Fu, X.X. Yan, Y.F. Chen, L. Xu, D.M. Sun, J.-M. Lee, Y.W. Tang, *Adv. Mater.*, 2018, **30**, 1704609.
- J. Masa, W. Xia, I. Sinev, A.Q. Zhao, Z.Y. Sun, S. Grützke, P. Weide, M. Muhler,
 W. Schuhmann, *Angew. Chem. Int. Ed.*, 2014, 53, 8508.
- 12 H. Lei, Z.L. Wang, F. Yang, X.Q. Huang, J.H. Liu, Y.Y. Liang, J.P. Xie, M.S.

Javed, X.H. Lu, S.Z. Tan, W.J. Mai, Nano Energy, 2020, 68, 104293.

- G.H. Liu, J.D. Li, J. Fu, G.P. Jiang, G. Lui, D. Luo, Y.P. Deng, J. Zhang, Z.P. Cano, A.P. Yu, D. Su, Z.Y. Bai, L. Yang, Z.W. Chen, *Adv. Mater.*, 2019, **31**, 1806761.
- 14 X. Liu, L. Wang, P. Yu, C.G. Tian, F.F. Sun, J.Y. Ma, W. Li, H.G. Fu, Angew. Chem. Int. Ed., 2018, 57, 16166-16170.
- 15 Q. Lu, J. Yu, X.H. Zou, K.M. Liao, P. Tan, W. Zhou, M. Ni, Z.P. Shao, Adv. Funct. Mater., 2019, 29, 1904481.
- 16 Q. Shao, J.Q. Liu, Q. Wu, Q. Li, H.G. Wang, Y.H. Li, Q. Duan, *Nano-Micro Lett.*, 2019, 11, 4.
- 17 Y.L. Niu, X. Teng, S.Q. Gong, Z.F. Chen, J. Mater. Chem. A, 2020, 8, 13725-13734.
- 18 P.K. Gangadharan, S.N. Bhange, N. Kabeer, R. Illathvalappil, S. Kurungot, Nanoscale Adv., 2019, 1, 3243–3251.
- 19 S. Chen, S. Chen, B.H. Zhang, J.T. Zhang, ACS Appl. Mater. Interfaces, 2019, 11, 16720-16728.
- Y. Jiang, Y.P. Deng, R.L. Liang, J. Fu, D. Luo, G.H. Liu, J.D. Li, Z. Zhang, Y.F.
 Hu, Z.W. Chen, *Adv. Energy Mater.*, 2019, 9, 1900911.