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Good crystallinity was achieved as the diffracted peaks displayed a good match with the ICDD 

reference no. 01-089-0510 of ZnO wurtzite hexagonal with a space group of P63mc. As for the 

NZO (Figure S1a), diffraction peaks of Ni metal were detected at (100), (002), (101), (110), and 

(202) crystal plane in correlation with standard Ni ICDD Card No. 00-004-0805. This occurrence 

is attributed to the massive variance in terms of ionic size between Ni+ ions and Zn2+ ions in the 

ZnO system. With that being mentioned, the existence of Ni metal seemed to affect the 

fabrication of ZnO[1]. Based on the XRD pattern, no shifting was observed in the peak position 

for NZO samples. This indicates that the existence of Ni particles was not slotted into the lattice 

but squeezed in the grain boundaries of ZnO crystallites[1, 2]. For NZO, as shown 

in Figure S1(a), it was revealed that the materials have a single phase of ZnO wurtzite hexagonal 

structure for the Ni content less than 5%. Although the XRD peak position did not exhibit any 

changes, some alteration was noted for peak intensity and width. In this case, the introduction of 

Ni did not move the peak to a lower position. In fact, the impurities for peak intensity for Ni 

metal increased as the stoichiometry increased at peak position (111). 
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Figure S1(Supporting information). The XRD pattern of both (a) pure ZnO and  NZO film. (b) 

XRD of NZO annealed at 400℃ and 600℃.
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Figure S2(Supporting information). (a) XPS analysis of ZnO and Ni-doped ZnO films (b). Zn 2p 

of Ni-doped and pure ZnO films.
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Figure S3 (Supporting information). Sweeping behavior for P++-Si/NZO/Au under sweeping 
voltages. (a and e) 1 V, (b and f) 2 V, (c and g) 3 V, (d and h) 4V, (i and m) 8 V. (j and n) 10 V, 
(k and o) 15 V,  and (l and p) 17 V in a linear and semi-logarithmic scale.
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Figure S4 (Supporting information). The I–V sweeping behavior for pure ZnO-based device (a) 

annealed at 400°C and (b) 600°C.
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Figure S5 (Supporting information). Relevant plasticity characteristics of P++-Si/NZO/Au 

system. (a) The repeatable TS with AC pulses. (b) The delay, SET, and relaxation characteristic 

of electronic synapses, (inset) The relaxation in current level and its exponential decay fitting.

Figure S5(a) displays that ZnO-based devices can be switched between HRS and LRS by SET 

and RESET pulses. However, in order to form a volatile conductive path, there must be a pulse to 

maintain the ON state after programming.  For Plasticity characterization, first, a short voltage 

pulse with a pulse width of 10 ms and a pulse height of 0.4 V is applied to the device, and then a 

long read pulse with a pulse height of 13 V for 10 ms. The short voltage pulse induces threshold 



switching in the electron nociceptor by switching it from an insulated state to a conducting state. 

The current abruptly increased to the ON state after a short delay and gradually recovered back to 

the insulating state, as shown in Figure. S5(b). The relaxation of the electronic synapse is 

clearly demonstrated in Figure. S5(b). The relaxation time for the given pulse was found to be 

~1.4 ms by using the exponential decay function. In order to provide the artificial 

nociceptor enough time to completely return to the OFF state under zero bias, a long 

interval (10 ms) is applied between the SET pulse and the read pulse. In order to 

intentionally apply a small read voltage of 0.4 V in order to extract the real conductance 

state of the device without affecting its original condition. Since the relaxation interval is 

large enough (> 𝜏) for spontaneous relaxation, the device exhibits a repeatable threshold 

switching in continuous pulses. P++-Si/NZO/Au has these dynamic characteristics of 

repeatable threshold switching using pulses, which is ideal for effectively simulating 

nociceptors.
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Figure S6 (Supporting information). The I-V characteristic of P++-Si/Ni-ZnO/Au device at 

different annealing temperature fox example (a) 400℃ and (b) 600℃.
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