Supporting Information

Designing Ferrimagnetic-Ferroelastic Multiferroic Semiconductor in FeMoClO₄ Nanosheet via Element Substitution

Lijuan Yan,^a Xiaofeng Liu,^{b,c,d} Pengfei Gao,^e Xiangyang Li,^{*b} and Xingxing Li^{*b,c}

^aCollege of Electronics & Information Engineering, Guangdong Ocean University, Zhanjian, Guangdong 524088, China

^bHefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China

^cDepartment of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

^dSchool of Physics, Hefei University of Technology, Hefei, Anhui 230009, China

^eInterdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, Jiangsu 214443, China

*E-mail: xyangli@ustc.edu.cn

*E-mail: lixx@ustc.edu.cn

Figure S1. Exfoliation energy E_{cl} and cleavage strength σ as functions of separation distance *d* in the process of exfoliating one nanosheet from its bulk crystal.

Figure S2. (a) *Ab initio* molecular dynamics (AIMD) simulation of total energy with time for FeMoClO₄ with a P4/nmm space group at 300 K. The insets depict snapshots of $4 \times 4 \times 1$ supercell containing 224 atoms after 6 *ps*. (b) Phonon dispersions of the FeMoClO₄ nanosheet.

Figure S3. Four different magnetic states calculated for FeMnClO₄ nanosheet. They contain one ferrimagnetic (FIM) state, one ferromagnetic (FM) state, and two antiferromagnetic (AFM) states.

Figure S4. Spin density, nearest and next-nearest spin exchange $(J_1 \text{ and } J_2)$ paths for the FeMoClO₄ nanosheet. Pink (Blue) denotes spin-up (spin-down) component.

Figure S5. (a) Spin density, nearest and next-nearest spin exchange (J_1 and J_2) paths for 2D $Fe^{(1)}Fe^{(2)}ClO_4$. Pink (Blue) denotes spin-up (spin-down) component. The specific values of spin exchange parameters are shown in Table S4. After $Fe^{(2)6+}$ replaces Mo⁶⁺, the calculated magnetic moment of $Fe^{(1)}Fe^{(2)}ClO_4$ is 6 μ_B per unit cell, which is 2 μ_B per unit cell lower than that of FeMnClO₄. Noted that among the entire 3d transition metals, Mo⁶⁺ can be substituted by Cr⁶⁺ besides Fe⁶⁺ and Mn⁶⁺, but FeCrClO₄ has an AFM ground state as well as FeMoClO₄. Other transition metals that can not possess a +6 charge state are discarded. (b) Specific heat (C_v) as a function of temperature for FeMoClO₄ and Fe⁽¹⁾Fe⁽²⁾ClO₄. The calculated Curie temperature ($T_c = 39$ K) of Fe⁽¹⁾Fe⁽²⁾ClO₄ is higher than 14 K of FeMoClO₄, but lower than 127 K of FeMnClO₄.

Figure S6. (a) Spin-polarized band structure and (b) projected density of states for the FeMnClO₄ nanosheet calculated by HSE06 functional.

Figure S7. Band structure of FeMnClO₄ nanosheet for electron doping (left), pure (middle) and hole doping (right) with a carrier concentration of $\pm 1.39 \times 10^{14}$ cm⁻². Positive and negative values above the panel represent electron and hole doping, respectively.

Figure S8. (a) Band structure of FeMnClO₄ nanosheet after considering the spin orbit coupling effect. (b, c) Topological nodal lines in valence band (VB) and conduction band (CB).

Figure S9. Band structure of FeMnClO₄ nanosheet for electron doping (left), pure (middle) and hole doping (right) with a carrier concentration of 2.78×10^{14} cm⁻². Positive and negative values above the panel represent electron and hole doping, respectively.

Figure S10. (a, d) Spin densities and (b, c, e, f) band structures of trilayer and four-layer FeMnClO₄, where the band structures in (c, f) panels are plotted under a perpendicular electric field of 0.01 V/Å.

ΔE (FeMnClO ₄)	$U_{Mn}=2$	$U_{Mn}=3$	$U_{Mn}=4$	$U_{\rm Mn}=5$	U _{Mn} =6
$U_{\rm Fe}$ =2	0.726	0.677	0.607	0.512	0.376
$U_{\rm Fe}=3$	0.696	0.656	0.588	0.495	0.394
$U_{\rm Fe}$ =4	0.659	0.627	0.556	0.474	0.387
$U_{\rm Fe}$ =5	0.621	0.593	0.523	0.451	0.374
$U_{\rm Fe}$ =6	0.581	0.552	0.488	0.424	0.357

Table S1. Calculated relative energies of ferromagnetic (FM) state to ferrimagnetic (FIM) state ΔE (eV per chemical formula) for FeMnClO₄ at different values of onsite Coulomb interaction U.

Table S2. Magnetic exchange parameters (in meV), magnetic anisotropy energies (meV per chemical formula), and axial (planar) anisotropy strength (meV) for the FeMoClO₄ nanosheet.

FeMoClO ₄	J_1	J_2	$E_{[010]}$ - $E_{[100]}$	$E_{[001]}$ - $E_{[100]}$	$D_{\rm Fe}$	$E_{\rm Fe}$
	0.23	0.14	0	1.32	0.21	0.00

Table S3. Magnetic exchange parameters (in meV), magnetic anisotropy energies (meV per chemical formula), and axial (planar) anisotropy strength (meV) for the FeMnClO₄ nanosheet.

FeMnClO ₄	J_1	J_2	$E_{[010]}$ - $E_{[100]}$	$E_{[001]}$ - $E_{[100]}$	D_{Fe}	$E_{\rm Fe}$	D_{Mn}	E_{Mn}
	45.77	13.00	0.61	1.31	0.13	0.03	0.38	0.59

Table S4. Magnetic exchange parameters (in meV), magnetic anisotropy energies (meV per chemical formula), and axial (planar) anisotropy strength (meV) for the $Fe^{(1)}Fe^{(2)}ClO_4$ nanosheet.

Fe ⁽¹⁾ Fe ⁽²⁾ ClO ₄	J_1	J_2	$E_{[010]}$ - $E_{[100]}$	$E_{[001]}$ - $E_{[100]}$	$D_{\mathrm{Fe}(1)}$	$E_{\text{Fe}(1)}$	$D_{\mathrm{Fe}(2)}$	$E_{\rm Fe(2)}$
	18.47	1.98	0.48	1.21	0.10	0.01	-0.14	0.06