Supplemental Materials

Extremely Promising Monolayer Materials with Robust Ferroelectricity and Extraordinary Piezoelectricity: δ-AsN, δ-SbN, and δ-BiN

Yuwen Zhang^{1,2}, Tao Ouyang^{1,2,*}, Chaoyu He^{1,2,*}, Jin Li^{1,2}, and Chao Tang^{1,2,*}

¹ School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China

² Hunan Key Laboratory for Micro-nano Energy Materials and Devices, Xiangtan University,

Hunan 411105, China

Fig. S1 Typical phonon dispersions of (a) δ -AsN, (b) δ -SbN, and (c) δ -BiN monolayer binary compounds.

Fig. S2 Calculated DFT-PBE and HSE06 band structures of monolayer binary compounds of (a) δ-

AsN, (b) δ -SbN and (c) δ -BiN at zero strain. The positions of band gaps are highlighted by red doublesided arrow and the Fermi level is set at zero.

Fig. S3 The total polarization with spin-orbit coupling for (a) δ -AsN, (b) δ -SbN, and (c) δ -BiN monolayers as a function of normalized displacement.

Fig. S4 Relaxed-ion elastic stiffness coefficients (a) C_{11} , (b) C_{22} , and (c) C_{12} of δ -AsN, δ -SbN, and δ -BiN are calculated by the energy-strain method. ($\varepsilon_{11} = \Delta a/a_0$; $\varepsilon_{22} = \Delta b/b_0$; $\varepsilon_{12} = \Delta a/a_0 = \Delta b/b_0$, a_0 and

Fig. S5 (a) Clamped-ion piezoelectric coefficients e_{11} and e_{12} without spin-orbit coupling. (b) Relaxed-ion piezoelectric coefficients e_{11} and e_{12} with spin-orbit coupling.

Materials	Methods	α -phase (eV/atom)	δ-phase (eV/atom)	$\Delta E \text{ (meV/atom)}$
AsN	GGA-PBE	-6.138	-6.156	18
	SCAN meta-GGA	-14.350	-14.367	17
	HSE06	-7.578	-7.596	18
SbN	GGA-PBE	-5.829	-5.877	48
	SCAN meta-GGA	-22.750	-22.801	51
	HSE06	-7.237	-7.296	56
BiN	GGA-PBE	-5.489	-5.504	15
	SCAN meta-GGA	-43.021	-43.035	14
	HSE06	-6.682	-6.712	30

Table S1 Energy comparison between δ -phase and α -phase of AsN, SbN, and BiN at GGA-PBE, meta-GGA, and HSE06 levels.

Table S2 Lattice Parameters, Relaxed-Ion and Clamped-Ion Elastic Stiffness Coefficients C_{11} , C_{22} , and C_{12} for δ -AsN, δ -SbN, and δ -BiN Monolayers at the DFT-PBE Level. The C_{11} , C_{22} , and C_{12} are in units of N/m.

Material	Lattice Parameters			Relaxed-ion			Clamped-ion		
	a (Å)	b (Å)	h (Å)	<i>C</i> ₁₁	<i>C</i> ₂₂	<i>C</i> ₁₂	C_{11}	<i>C</i> ₂₂	C_{12}
δ-AsN	4.80	5.25	2.11	81.77	31.97	-6.69	142.12	117.85	27.48
δ-SbN	5.18	5.64	2.34	42.38	21.20	-6.88	120.68	105.24	26.68
δ-BiN	5.26	5.55	2.50	29.46	14.01	-1.90	115.79	107.34	25.76

Table S3 Piezoelectric Coefficients (e_{11} , e_{12} , d_{11} , and d_{12}) for δ -AsN, δ -SbN, and δ -BiN Monolayers by Berry's Phase methods. The e_{11} and e_{12} are in units of 10^{-10} C/m, and d_{11} and d_{12} are in units of pm/V.

Matarial	Relaxed-ion				Clamped-ion			
Material	e_{11}	<i>e</i> ₁₂	d_{11}	d_{12}	e_{11}	<i>e</i> ₁₂	d_{11}	d_{12}
δ-AsN	3.76	2.75	5.39	9.73	-5.19	3.17	-4.37	3.71
δ-SbN	7.05	2.46	19.55	17.95	-4.81	2.86	-4.86	3.95
δ-BiN	12.42	2.88	43.87	26.50	-5.07	3.33	-5.35	4.39