Cauliflower-like NiFe alloys anchored on flake iron nickel carbonate hydroxide heterostructure towards superior overall water and urea electrolysis

Xing Wang^{*,1}, Meiru Zhao¹, Zhangquan Gong, Siyao Fang, Sheng Hu, Wei Pi, Haifeng Bao^{*}

School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China

*Corresponding author E-mail: wx@wtu.edu.cn, <u>baohaifeng@wtu.edu.cn</u>

Fig.S1. The electrodeposition experiment of NiFe/NiFeCH/CC. (a) CV curve; (b) chronopotentiometric curve at a cathodic current density of 20 mA cm⁻² for 100 s.

Fig.S2. (a) XRD pattern of NiCH/CC. (b) XRD patterns of powder NiFeCH, NiFeCH/CC and NiFe/NiFeCH/CC.

Fig.S3. (a) XRD patterns of powder NiFeCH collected from the precipitate after hydrothermal reaction with different proportions of Ni and Fe. (b) XRD patterns of the as-prepared NiFeCH/CC with different proportions of Ni and Fe.

Fig.S4. SEM images of CC.

Fig.S5. Elemental mapping of NiFeCH/CC measured with SEM.

Fig.S6. XPS survey spectrum of NiFeCH and NiFe/NiFeCH/CC.

Fig.S7. LSV curves of NiFeCH/CC with different proportions of Ni and Fe.

Fig.S8. LSV curves of NiFe/NiFeCH/CC with different proportions of Ni and Fe in

NiFe alloy.

Fig.S9. CV curves with various scan rates. (a) NiCH/CC; (b) NiFeCH/CC; (c) Ni/NiFeCH/CC; (d) Fe/NiFeCH/CC; (e) NiFe/NiFeCH/CC; (f) NiFe/CC.

Fig.S10. (a) LSV curve and (b) corresponding Tafel plot of Pt/C/CC.

Fig.S11. CV curves with various scan rates. (a) NiCH/CC; (b) NiFeCH/CC; (c) Ni/NiFeCH/CC; (d) Fe/NiFeCH/CC; (e) NiFe/NiFeCH/CC; (f) NiFe/CC.

Fig.S12. High-resolution XPS spectra of Ni 2p before and after stability test.

Electrocatalysts	C ₂ H ₃ NiO ₂ ·4H ₂ O	FeCl ₃ ·6H ₂ O	Ni: Fe
	(mmol)	(mmol)	
Ni _{0.75} Fe _{0.38} CH	0.75	0.38	2:1
Ni _{0.75} Fe _{0.25} CH	0.75	0.25	3:1
Ni _{0.75} Fe _{0.19} CH	0.75	0.19	4:1
Ni _{0.75} Fe _{0.15} CH	0.75	0.15	5:1

c	1	ът.		OTT	1 .	. 1	
tor	as-prepared	N10	75 He.	CH.	electr	ocatal	vsts
101	ab prepared	· · · · ().	/.) • • ×	U 11		o o a car	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Electrocatalysts	C ₂ H ₃ NiO ₂ ·4H ₂ O FeCl ₃ ·6l		Ni: Fe
	(mol/L)	(mol/L)	
Ni ₁ Fe ₁ /NiFeCH	0.01	0.01	1:1
Ni ₁ Fe ₂ /NiFeCH	0.01	0.02	1:2
Ni ₁ Fe _{0.5} /NiFeCH	0.01	0.005	2:1
Ni ₁ Fe _{0.33} /NiFeCH	0.01	0.0033	3:1

Table S2. Content of $C_2H_3NiO_2 \cdot 4H_2O$ and $FeCl_3 \cdot 6H_2O$ added in electrochemical deposition reaction for as-prepared Ni₁Fe_x/NiFeCH electrocatalysts

Table S3. ICP data for as-prepared $Ni_{0.75}Fe_xCH$ electrocatalysts.

Electrocatalysts	Ni (mmol)	Fe (mmol)	Ni: Fe (~)
Ni _{0.75} Fe _{0.38} CH	24.7*10-4	8.25*10-4	3:1
Ni _{0.75} Fe _{0.25} CH	23.2*10-4	5.75*10-4	4:1
Ni _{0.75} Fe _{0.19} CH	23.92*10-4	4.6*10-4	5:1
Ni _{0.75} Fe _{0.15} CH	24.3*10-4	3.8*10-4	6:1

Catalysts	Substrate	η (mV)	Stability	Referenc
		10 mA cm ⁻²	(h)	e
NiFe/NiFeCH/CC	CC	210	150	This work
Ni ₃ FeN/r-GO	Ni foam	270	10	[1]
Co ₉ S ₈ @MoS ₂ /N-doped	/	233	12	[2]
hollow carbon				
Fe-NiCoP	Ni foam	235	18	[3]
CoFe/NF	Ni foam	220	50	[4]
NiFeOP	Ni foam	310	12	[5]
Ni _{0.75} Fe _{0.25} Se ₂ @NF	Ni foam	210	30	[6]
CoFe ₂ O ₄ /CoO-CNT	/	246	/	[7]
Co ₂ P/CoP@Co@NCNT	/	256	50	[8]
CoSe ₂ @MoSe ₂	CC	183.8	/	[9]
Co ₄ Ni ₁ S/CC	CC	296	36	[10]
Co(OH) ₂ /NiMo CA@CC	CC	267	24	[11]
Co-Ni ₃ S ₂	Ni foam	228	25	[12]
CoP@FeCoP/NC YSMPs	Carbon paper	238	20	[13]

Table S4. Comparison of OER performance for NiFe/NiFeCH/CC with otherbifunctional non-noble metal electrocatalysts tested in 1 M KOH.

Catalysts	Substrate	η (mV)	Stability	Referenc
		10 mA	(h)	e
		cm ⁻²		
NiFe/NiFeCH/CC	CC	90	30	This work
Ni ₃ FeN/r-GO	Ni foam	94	10	[1]
Co ₉ S ₈ @MoS ₂ /N-doped hollow	/	126	12	[2]
carbon				
Fe-NiCoP	Ni foam	147	20	[3]
CoFe/NF	Ni foam	110	50	[4]
NiFeOP	Ni foam	209	14	[5]
Ni _{0.75} Fe _{0.25} Se ₂ @NF	Ni foam	117	30	[6]
CoFe ₂ O ₄ /CoO-CNT	/	164	/	[7]
Co2P/CoP@Co@NCNT	/	118	12	[8]
CoSe ₂ @MoSe ₂	CC	109.9	/	[9]
Co ₄ Ni ₁ S/CC	CC	192	32	[10]
Co(OH) ₂ /NiMo CA@CC	CC	30	24	[11]
Co-Ni ₃ S ₂	Ni foam	102	25	[12]
CoP@FeCoP/NC YSMPs	Carbon paper	141	20	[13]

Table S5. Comparison of HER performance for NiFe/NiFeCH/CC with otherbifunctional non-noble metal electrocatalysts tested in 1 M KOH.

Catalysts	Substrate	E ₁₀	Stability	Reference
		(V)	(h)	
NiFe/NiFeCH/CC	CC	1.49	30	This work
Ni ₃ FeN/r-GO	Ni foam	1.60	100	[1]
Co ₉ S ₈ @MoS ₂ /N-doped	/	1.56	12	[2]
hollow carbon				
Fe-NiCoP	Ni foam	1.60	18	[3]
CoFe/NF	Ni foam	1.64	50	[4]
NiFeOP	Ni foam	1.69	20	[5]
Ni _{0.75} Fe _{0.25} Se ₂ @NF	Ni foam	1.61	50	[6]
CoFe ₂ O ₄ /CoO-CNT	/	1.61	~60	[7]
Co ₂ P/CoP@Co@NCNT	/	1.60	12	[8]
CoSe ₂ @MoSe ₂	CC	1.53	24	[9]
Co ₄ Ni ₁ S/CC	CC	1.60	~10	[10]
Co(OH) ₂ /NiMo CA@CC	CC	1.52	30	[11]
Co-Ni ₃ S ₂	Ni foam	1.54	25	[12]
CoP@FeCoP/NC YSMPs	Carbon paper	1.68	20	[13]

Table S6. Comparison of overall water splitting performance for NiFe/NiFeCH/CC

 with other bifunctional non-noble metal electrocatalysts tested in 1 M KOH.

References

[1] Y. Gu, S. Chen, J. Ren, Y.A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, Electronic Structure

Tuning in Ni₃FeN/r-GO Aerogel toward Bifunctional Electrocatalyst for Overall Water Splitting, ACS Nano, 12 (2018) 245-253.

[2] M. Kim, H. Seok, N. Clament Sagaya Selvam, J. Cho, G.H. Choi, M.G. Nam, S. Kang, T. Kim, P.J. Yoo, Kirkendall effect induced bifunctional hybrid electrocatalyst (Co₉S₈@MoS₂/N-doped hollow carbon) for high performance overall water splitting, Journal of Power Sources, 493 (2021) 229688.

[3] B. He, C.Q. Peng, F. Ye, H.W. Gao, Y. Wang, Y.W. Tang, Q.L. Hao, H.K. Liu, Z. Su, Facile formation of Fe-doped NiCoP hollow nanocages as bifunctional electrocatalysts for overall water splitting, CrystEngComm, 23 (2021) 3861-3869.

[4] P. Babar, A. Lokhande, H.H. Shin, B. Pawar, M.G. Gang, S. Pawar, J.H. Kim, Cobalt Iron Hydroxide as a Precious Metal-Free Bifunctional Electrocatalyst for Efficient Overall Water Splitting, Small, 14 (2018) 1702568.

[5] J. Chen, Z. Guo, Y. Luo, M. Cai, Y. Gong, S. Sun, Z. Li, C.J. Mao, Engineering Amorphous Nickel Iron Oxyphosphide as a Highly Efficient Electrocatalyst toward Overall Water Splitting, ACS Sustainable Chemistry & Engineering, 9 (2021) 9436-9443.

[6] X. Hu, Q. Zhou, P. Cheng, S. Su, X. Wang, X. Gao, G. Zhou, Z. Zhang, J. Liu, Nickel-iron selenide polyhedral nanocrystal with optimized surface morphology as a high-performance bifunctional electrocatalyst for overall water splitting, Applied Surface Science, 488 (2019) 326-334.

[7] K. Srinivas, Y. Chen, Z. Su, B. Yu, M. Karpuraranjith, F. Ma, X. Wang, W. Zhang, D. Yang, Heterostructural CoFe₂O₄/CoO nanoparticles-embedded carbon nanotubes network for boosted overall water-splitting performance, Electrochimica Acta, 404 (2022) 139745.

[8] Z. Lu, Y. Cao, J. Xie, J. Hu, K. Wang, D. Jia, Construction of Co₂P/CoP@Co@NCNT rich-interface to synergistically promote overall water splitting, Chemical Engineering Journal, 430 (2022) 132877. [9] S.J. Patil, N.R. Chodankar, S.K. Hwang, P.A. Shinde, G. Seeta Rama Raju, K. Shanmugam Ranjith, Y.S. Huh, Y.K. Han, Co-metal–organic framework derived CoSe₂@MoSe₂ core–shell structure on carbon cloth as an efficient bifunctional catalyst for overall water splitting, Chemical Engineering Journal, 429 (2022) 132379.

[10] Y. Dong, Z. Fang, W. Yang, B. Tang, Q. Liu, Integrated Bifunctional Electrodes Based on Amorphous Co-Ni-S Nanoflake Arrays with Atomic Dispersity of Active Sites for Overall Water Splitting, ACS Appl Mater Interfaces, 14 (2022) 10277-10287.

[11] Q. Zhang, W. Xiao, W.H. Guo, Y.X. Yang, J.L. Lei, H.Q. Luo, N.B. Li, Macroporous Array Induced Multiscale Modulation at the Surface/Interface of Co(OH)₂/NiMo Self-Supporting Electrode for Effective Overall Water Splitting, Advanced Functional Materials, (2021) 2102117.

[12] C. Jin, P. Zhai, Y. Wei, Q. Chen, X. Wang, W. Yang, J. Xiao, Q. He, Q. Liu, Y. Gong, Ni(OH)₂ Templated Synthesis of Ultrathin Ni₃S₂ Nanosheets as Bifunctional Electrocatalyst for Overall Water Splitting, Small, 17 (2021) 2102097.

[13] J. Shi, F. Qiu, W. Yuan, M. Guo, Z.H. Lu, Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting, Chemical Engineering Journal, 403 (2021) 126312.