Supplementary Information

FeCo/N-co-doped 3D Carbon Nanofibers as Efficient Bifunctional

Oxygen Electrocatalyst for Zn-Air Batteries

Jiangbo Wang,^a Yanan Zhang, ^a Xue Guo, ^a Shiqin Liao, ^b Pengfei Lv ^a and Qufu Wei*^a

^a Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue,

Jiangsu Province, Wuxi 214122, PR China

^b Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion

Technology, Nanchang 330201, China

* Corresponding authors. Email addresses: qfwei@jiangnan.edu.cn (Q. Wei)

Chemical reagents and Materials

Potassium ferricyanide (K_3 [Fe(CN)₆]), cobalt nitrate (Co(NO₃)₂·6H₂O), trisodium citrate dihydrate (C₆H₅Na₃O₇) obtained at Sinopharm Chemical Reagent Co., Ltd., China. 20 wt% Pt/C and RuO₂ acquired at Aladdin Co., Ltd., China. 5 wt% Nafion was obtained from Chuxi Co., Ltd., Shanghai, China.

Calculations

Koutecky–Levich equation was used to determine the number of electrons transferred (n) for ORR and to plot corresponding K-L curves at different potentials.

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{B\omega^{1/2}}$$
(1)

$$B = 0.2nFC_0 D_0^{2/3} v^{-1/6}$$
⁽²⁾

J is measured current, J_k is kinetic current density, ω is the rotation speed of RDE and *B* is the slope of K-L plots. In addition, n is the transferred electron number, *F* is Faraday constant (96 485 C/mol), C_0 is oxygen concentration in solution (1.2 × 10⁻⁶ mol/cm³), D_0 is diffusion coefficient of O₂ in 1 M KOH (1.9 × 10–5 cm²/s) and *v* is the kinetic viscosity of the electrolyte (0.01 cm²/s).

Fig. S1 SEM pattern of BC nanofibers after carbonization

Fig. S2 SEM pattern of PBA nanoparticles before carbonization

Fig. S3 SEM pattern of PBA nanoparticles after carbonization

Fig. S4 N₂ adsorption-desorption isotherms of FeCoNCF and FeCoNC

Fig. S5 Pore diameter distributions determined by BET method of FeCoNCF and FeCoNC

Fig. S6 High-resolution XPS survey spectrum of C 1s of FeCoNCF sample

Fig. S7 High-resolution XPS survey spectra of Fe 2p of FeCoNC

Fig. S8 High-resolution XPS survey spectra of Fe 2p of FeCoNCF and FeCoNC

Fig. S9 Chronopotentiometry curve for FeCoNCF at 10 mA cm⁻²

Table S1 Comparison of ORR and OER performance of FeCoNCF catalyst with transition metal-based

Catalysts	ORR activity (E _{1/2} : Half-wave potential; TS: Tafel slope)	OER activity $(\eta_{10}: \text{Overpotential at current}$ density of 10 mA cm ⁻²)	ΔE (ΔE= $E_{j=10}$ - $E_{1/2}$)	Ref.
FeCoNCF	E _{1/2} : 0.81 V TS: 51 mV dec ⁻¹	η ₁₀ : 341 mV TS: 69 mV dec ⁻¹	0.761	This work
NiFe/N-CNT	E _{1/2} : 0.75 V TS: /	η ₁₀ : 290 mV TS: 49 mV dec ⁻¹	0.77	1

electrocatalysts in reported in literatures.

FeP/Fe ₂ O ₃ @NPCA	E _{1/2} : 0.81 V TS: 88 mV dec ⁻¹	η ₁₀ : 402 V TS: 86 mV dec ⁻¹	0.822	2
MnO/Co/PGC	E _{1/2} : 0.78 V TS: 69 mV dec ⁻¹	η ₁₀ :307 mV TS: 77 mV dec ⁻¹	0.757	3
Co@N-CNT/rGO- 0.1	E _{1/2} : 0.82 V TS: 77 mV dec ⁻¹	η ₁₀ : 480 mV TS: 251 mV dec ⁻¹	0.89	4
FeCo- NSCNF@NCNT	E _{1/2} : 0.79 V TS: 64.5 mV dec ⁻¹	η ₁₀ : 360 mV TS: 49.5 mV dec ⁻¹	0.8	5
FeCo@NCNF	E _{1/2} : 0.825 V TS: 58 mV dec ⁻¹	η ₁₀ : 344 mV TS: 56.6 mV dec ⁻¹	0.749	6
FeCo-1/NSC	E _{1/2} : 0.82 V TS: 69.75 mV dec ⁻¹	η_{10} : 325 mV TS: 56.6 mV dec ⁻¹	0.735	7
FeCo/N-DNC	E _{1/2} : 0.81 V TS: /	η ₁₀ : 390 mV TS: 68 mV dec ⁻¹	0.81	8
FeS ₂ –CoS ₂ /NCFs	E _{1/2} : 0.81 V TS: 55 mV dec ⁻¹	η ₁₀ : 340 mV TS: 49 mV dec ⁻¹	0.76	9
Co/CNWs/CNFs	E _{1/2} : 0.82 V TS: 107 mV dec ⁻¹	η ₁₀ : 412 mV TS: 141 mV dec ⁻¹	0.822	10
FeCo@NC-750	E _{1/2} : 0.80 V TS: 54.6 mV dec ⁻¹	η ₁₀ : 290 mV TS: 52 mV dec ⁻¹	0.72	11

Table S2 Comparison of Zn-air performance of FeCoNCF catalyst with transition metal-based

Catalysts	OCV (V) (OCV: Open-circuit voltage; L=liquid ZAB; S=Solid ZAB)	Power density (mW cm ⁻²) (A= Aqueous ZAB; S=Solid-state ZAB)	Ref.
FeCoNCF	1.46 V (S)	FeCoNCF: 49.29 mW cm ⁻² (S) Pt/C+RuO ₂ : 30.91 mW cm ⁻² (S)	This work
NiFe/N-CNT	1.48 V (A) 1.41 V (S)	NiFe/N-CNT: 300.7 mW cm ⁻² (A) Pt/C+RuO ₂ : 105.6 mW cm ⁻² (A) NiFe/N-CNT: 105.4 mW cm ⁻² (S)	1
FeP/Fe ₂ O ₃ @NPCA	1.42 V (S)	FeP/Fe ₂ O ₃ @NPCA: 130 mW cm ⁻² (A) Pt/C+RuO ₂ : 108 mW cm ⁻² (A) FeP/Fe ₂ O ₃ @NPCA: 40.8 mW cm ⁻² (S)	2
MnO/Co/PGC	1.52 V (A)	MnO/Co/PGC: 172 mW cm ⁻² (A) Pt/C+RuO ₂ : 150 mW cm ⁻² (A)	3
Co@N-CNT/rGO-0.1	1.43 V (A)	<u>Co@N-CNT/rGO-0.1</u> : 122 mW cm ⁻² (A) Pt/C+RuO ₂ : 102 mW cm ⁻² (A)	4
FeCo-NSCNF@NCNT	/	/	5
FeCo@NCNF	1.46 V (A)	FeCo@NCNF: 134.83 mW cm ⁻² (A) Pt/C+RuO ₂ : 91.24 mW cm ⁻² (A)	6
FeCo-1/NSC	1.45 V (A)	FeCo-1/NSC: 162.74 mW cm ⁻² (A) Pt/C+RuO ₂ : 96.05 mW cm ⁻² (A) FeCo-1/NSC: 68.3 mW cm ⁻² (S) Pt/C+RuO ₂ : 28.2 mW cm ⁻² (S)	7

electrocatalysts in reported in literatures.

	FeCo/N-DNC	/	FeCo/N-DNC: 115 mW cm ⁻² (A) Pt/C+RuO ₂ : 109 mW cm ⁻² (A)	8
L	FeS ₂ –CoS ₂ /NC	Fs 1.46 V (L) 1.39 V (S)	FeS ₂ -CoS ₂ /NCFs: 257 mW cm ⁻² (L) Pt/C+RuO ₂ : 163 mW cm ⁻² (L) FeS ₂ -CoS ₂ /NCFs: 69 mW cm ⁻² (S)	9
	Co/CNWs/CNI	Fs 1.46 V (L) 1.55 V (S)	Co/CNWs/CNFs: 304 mW cm ⁻² (L) Pt/C+RuO ₂ : 106 mW cm ⁻² (L) Co/CNWs/CNFs: 176 mW cm ⁻² (S)	10
	FeCo@NC-75	50 1.38 V (L)	FeCo@NC-750: 132 mW cm ⁻² (L) Pt/C+RuO ₂ : 136 mW cm ⁻² (L)	11

References

- H. Lei, Z. Wang, F. Yang, X. Huang, J. Liu, Y. Liang, J. Xie, M. S. Javed, X. Lu, S. Tan and W. Mai, *Nano Energy*, 2020, 68, 104293.
- K. Wu, L. Zhang, Y. Yuan, L. Zhong, Z. Chen, X. Chi, H. Lu, Z. Chen, R. Zou, T. Li, C. Jiang, Y. Chen, X. Peng and J. Lu, *Adv.Mater.*, 2020, **32**, 2002292.
- 3. X. F. Lu, Y. Chen, S. Wang, S. Gao and X. W. Lou, *Adv.Mater.*, 2019, **31**, 1902339.
- 4. X. Peng, L. Wei, Y. Liu, T. Cen, Z. Ye, Z. Zhu, Z. Ni and D. Yuan, *Energy Fuels*, 2020, **34**, 8931–8938.
- K. Fu, Y. Wang, L. Mao, X. Yang, W. Peng, J. Jin, S. Yang and G. Li, *J Power Sourc*, 2019, 421, 68-75.
- H. Yu, D. Zhang, H. Hou, Y. Ma, Z. Fang, X. Lu, S. Xu, P. Hou, G. Shao, W. Yang and J. Teng, *Appl Surf Sci*, 2022, 571, 151292.
- 7. S. Chang, H. Zhang and Z. Zhang, J. Energy Chem., 2021, 56, 64-71.
- G. Fu, Y. Liu, Y. Chen, Y. Tang, J. B. Goodenough and J.-M. Lee, *Nanoscale*, 2018, 10, 19937-19944.
- 9. X. Shi, B. He, L. Zhao, Y. Gong, R. Wang and H. Wang, J Power Sourc. 2021, 482, 228955.
- C. Xia, L. Huang, D. Yan, A. I. Douka, W. Guo, K. Qi and B. Y. Xia, *Adv. Funct. Mater.*, 2021, 31, 2105021.
- 11. P. Cai, S. Ci, E. Zhang, P. Shao, C. Cao and Z. Wen, *Electrochim Acta*, 2016, **220**, 354-362.