Thickness-Dependent Excitonic Properties of WSe₂/FePS₃ van der

Waals Heterostructures

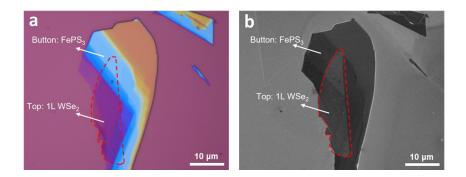
Xu Zhang^{a, #}, Chunli Wang^{a, #}, Zhenwei Ou^{b, #}, Xiaohong Jiang^{c, d, #}, Jinlian Chen^a, Huifang Ma^a, Chenyang Zha^a, Wei Wang^a, Linghai Zhang^{a, *}, Ti Wang^{b, *}, Lin Wang^a, *

^{a.} School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China

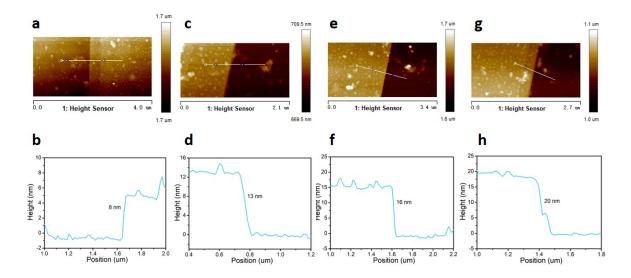
^{b.} School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education Wuhan University Wuhan 430072, China

^{c.} MIIT Key Laboratory of Flexible Electronics (KLOFE), Shanxi Key Laboratory of Flexible Electronics (KLOFE), Xi'an Key Laboratory of Flexible Electronics (KLOFE), Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China

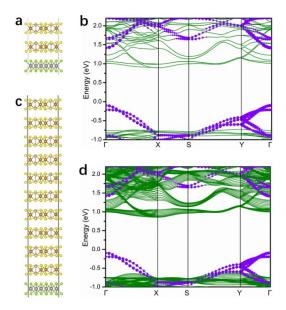
^{d.} Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China

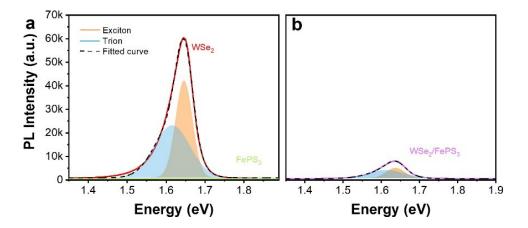

[#] These authors contributed equally to this work.

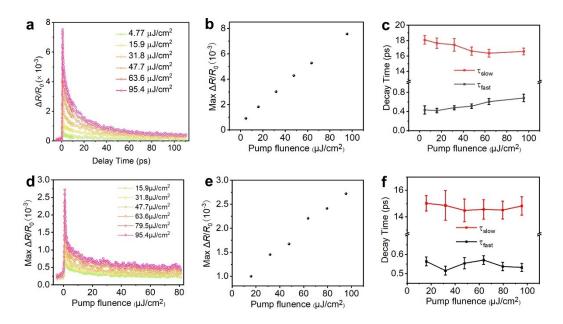
* Corresponding author.


E-mail: iam.lzhang@njtech.edu.cn

E-mail: wangti@whu.edu.cn


E-mail: <u>iamlwang@njtech.edu.cn</u>


Figure S1 (a, b) The optical microscopy (OM) image and the corresponding scanning electron microscope (SEM) image of WSe₂/FePS₃ van der Waals heterostructures, respectively.


Figure S2. The atomic force microscope measurements of WSe₂/FePS₃ van der Waals heterostructures.

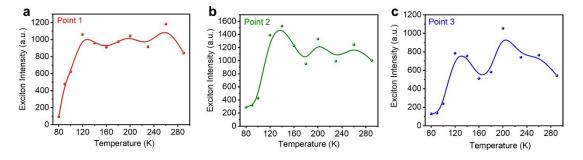

Figure S3. The relaxed structures of the monolayer-WSe₂/2L-FePS₃ (a) and monolayer-WSe₂/10L-FePS₃ (c) heterostructures. The band structures of the monolayer-WSe₂/2L-FePS₃ (b) and monolayer-WSe₂/10L-FePS₃ (d) heterostructures. The green lines are the energy bands of multilayered FePS₃ and the green lines with purple dots are the energy bands of monolayer-WSe₂.

Figure S4. The PL spectra of isolated WSe_2 monolayer and isolated $FePS_3$ (a) as well as $WSe_2/FePS_3$ heterostructure (b) with fitted curves under the excitation of 532 nm at room temperature.

Figure S5. Photocarrier dynamics in individual monolayer WSe₂ and WSe₂/nL-**FePS₃ heterostructures**. (a, d) Differential reflection signals of WSe₂ monolayer and WSe₂/nL-FePS₃ heterostructures as a function of the probe delay measured with a 400 nm pump and a 743 nm probe under various excitation fluence as indicated, respectively. (b, e) Peak differential reflection signal of WSe₂ monolayer and WSe₂/nL-FePS₃ heterostructures as a function of the excitation fluence, respectively. (c, f) Two time constants deduced from biexponential fits of WSe₂ monolayer and WSe₂/nL-FePS₃ heterostructures as a function of the excitation fluence, respectively.

Figure S6. (a-c) The neutral exciton intensity of point 1, point 2, point 3 of WSe₂/nL-FePS₃ heterostructure as a function of temperature under 532 nm excitation with the power density of 9.55 mJ/cm², respectively.