Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Chalcogen (S, Se, and Te) decorated few-layered Ti₃C₂T_x MXene hybrids: modulation of properties through covalent bonding

Jalal Azadmanjiri*, Pradip Kumar Roy, Lukáš Děkanovský, and Zdeněk Sofer*

Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická
5, 166 28 Prague 6, Czech Republic

*Corresponding authors: jalal_azad2000@yahoo.com, jalal.azadmanjiri@vscht.cz (Jalal Azadmanjiri) and zdenek.sofer@vscht.cz (Zdeněk Sofer)

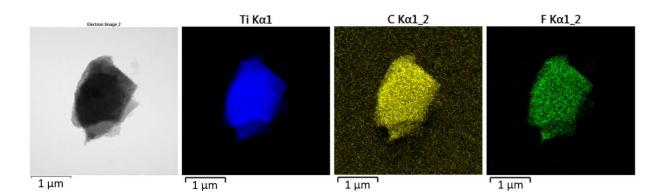


Figure S1. TEM and elemental mappings of synthesized Ti₃C₂Tx MXene.

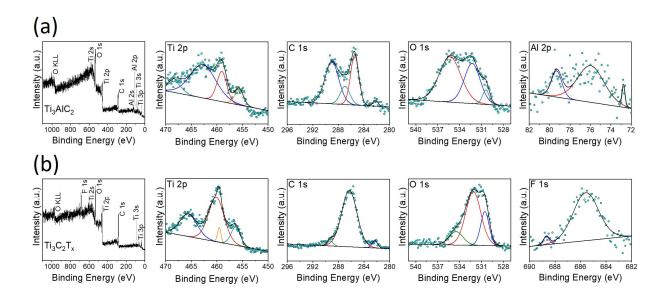


Figure S2. XPS survey and high-resolution spectrums of (a) Ti₃AlC₂ and (b) Ti₃C₂T_x samples.

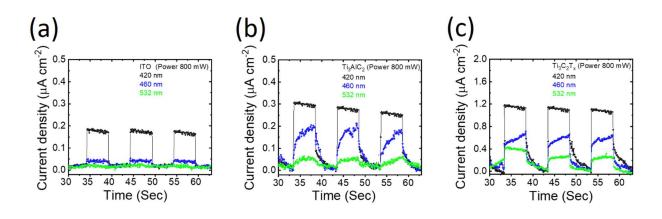


Figure S3. Power dependence of the photocurrent density under the illumination of 420 nm, 460 nm, and 532 nm LED sources in 1 M KOH solution at 1.25 V vs SCE for (a) blank ITO, (b) Ti_3AlC_2 , and (c) $Ti_3C_2T_x$ samples.

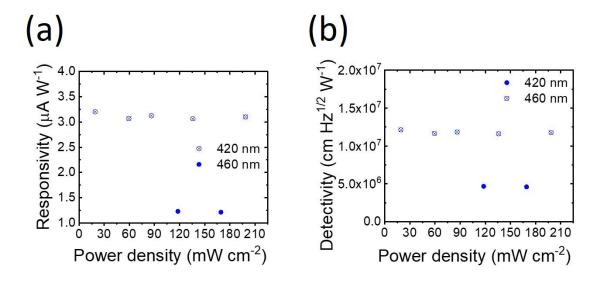


Figure S4. The responsivity (a) and detectivity (b) of blank $Ti_3C_2T_x$ PEC photodetector in 1 M KOH solution as a function of power density upon illumination wavelengths of 420 nm and 460 nm LED sources.