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Fig. S1: Convergence test data of the thermal conductivity with respect to (a) the k-point mesh size, (b) the

scalebroad parameter, and (c) the nearest neighbors. It is clear that the convergent result can be realized

at scalebroad = 1.0. After a series of test calculations, we choose a 100 × 100 × 1 k-point mesh and the

interaction cutoff of 9 nearest neighbors for the third-order IFCs to calculate the thermal conductivity of

monolayer ZrI2 at different temperatures.
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Fig. S2: (a) Impact of supercell size inconsistency in the calculations of the second-order and third-order

IFCs on the lattice thermal conductivity and (b) resultant slightly overestimated optimal figure of merit from

3.44 to 3.57 for n-type doped ZrI2 monolayer at 900 K.
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Fig. S3: Phonon scattering rates and n-type figure of merit of monolayer ZrI2 at 300 and 900 K. It is clear

that four-phonon (4ph) scattering rates are remarkably less than three-phonon (3ph) scattering rates over

the entire frequency range, implying that the former can be simply treated as a high-order perturbation. To

be specific, the lattice thermal conductivity after including 4ph scattering is calculated to be 19.12/5.77

W m−1 K−1 at 300/900 K, resulting in a slightly overestimated optimal figure of merit from 1.33/3.57 to

1.38/3.74 for n-type doped ZrI2 monolayer. Note that in both case, a 4 × 4 × 1 supercell with a 30 × 30 × 1

k-point mesh is considered to calculate the anharmonic four-order IFCs up to the 4th-nearest neighbors by

the Fourthorder.py script.1
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Table S1: Calculated in-plane stiffness (B2D), shear modulus (G2D), mean sound velocity (vm), Debye

temperature (Θ), and Grüneisen parameter (γe) from isotropic approximation for the ZrI2 monolayer.

Material B2D (N m−1) G2D (N m−1) vm (km s−1) Θ (K) γe

ZrI2 36.53 26.27 2.64 349.87 1.15

According to the elastic constants from the energy-strain scheme,2 the in-plane stiffness (B2D),

the shear modulus (G2D), and the Poisson’s ratio (ν) can be obtained by the following formulas3–6

B2D =
C11 + C12

2
, G2D = C44, and ν =

C12

C11
, (S1)

which are then employed to calculate the sound velocities of the TA and LA branches

vLA =

√
B2D + G2D

ρ2D
(S2)

and

vTA =

√
G2D

ρ2D
, (S3)

where ρ2D corresponds to the 2D mass density equal to 4.53 × 10−3g m−2 for monolayer ZrI2. The

mean sound velocity can be written as

vm =

[
1
3

(
1

v3
LA

+
2

v3
TA

)]−1/3

. (S4)

The Debye temperature can be computed from the mean sound velocity

Θ =
~vm

kB

(
4πN

S

)1/2

, (S5)

where ~, kB, N, and S are the reduced Planck constant, the Boltzmann constant, the number of

atoms in the unit cell, and the area of the unit cell, respectively. Finally, we can obtain Grüneisen

parameter from the Poisson’s ratio

γe =
3
2

(
1 + ν
2 − 3ν

)
. (S6)

As shown in Table S1, the calculated Debye temperature reaches up to 349.87 K on the one

hand, and the Grüneisen parameter is calculated to be as low as 1.15 on the other hand. According

to Slack’s theory,7 the high Debye temperature implies a high lattice thermal conductivity. This is

because a higher Debye temperature indicates that a larger number of phonon modes are frozen

out, thus giving rise to a decrease in the phonon scattering rates. Similarly, the small Grüneisen

parameter manifests a weak anharmonicity, suppressing the strength of phonon scattering, which

in turn enlarges the lattice thermal conductivity as well.
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Fig. S4: (a) Total energy and (b) shift of band edges for monolayer ZrI2 with respect to uniaxial strain along

the zigzag direction. The elastic modulus can be obtained via the quadratic fitting of total energy, and the

DP constant via the linear fitting of band edges. The effective masses of (c) electrons and (d) holes for

monolayer ZrI2, which can be fitted respectively by the energy of k states in the first Brillouin zone around

the conduction band minimum and valence band maximum with parabolic curves for the zigzag direction.
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Fig. S5: Electrical conductivity, power factor, electronic thermal conductivity, and figure of merit for p-type

and n-type doped ZrI2 monolayers at different temperatures as a function of carrier concentration. The solid

and dashed curves are based on the different carrier relaxation time by Eq. (3) and Eq. (S7), respectively.
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Table S2: Calculated elastic modulus (C2D), DP constant (E1), carrier effective mass (m∗M−K and m∗
Γ−M),

and carrier relaxation time (τ) of the ZrI2 monolayer at room temperature. Note that m0 denotes the mass

of a free electron.

Carrier type C2D (J m−2) E1 (eV) m∗M−K ( m0) m∗
Γ−M ( m0) τ (×10−13 s)

Electron 59.58 0.40 0.63 1.06 55.83

Hole 59.58 1.12 0.38 1.72 7.12

Apart from Eq. (3) in the main text, we recalculate the carrier relaxation time by deformation

potential theory with another alternative expression8,9

τ =
~ 3C2D

kBTmdE 2
1

, (S7)

where ~, C2D, kB, T, md, and El are the reduced Planck constant, 2D elastic modulus, Boltzmann

constant, absolute temperature, mean effective mass, and DP constant, respectively, and the mean

effective mass is determined by md =
√

m∗
Γ−Mm∗M−K. Table S2 lists all calculated parameters of

monolayer ZrI2 subject to Eq. (S7) at room temperature. At the same time, Fig. S5 displays the

corresponding electrical conductivity, power factor, electronic thermal conductivity, and figure of

merit for p-type and n-type doped ZrI2 monolayers at different temperatures and varying carrier

concentrations. For comparison, all electronic transport quantities of interest constrained to the

Eq. (3) are presented as well in Fig. S5 under the same conditions. As seen, the introduction

of Eq. (S7) overestimates the figure of merit of n-type doped ZrI2 monolayers. For example, the

optimal figure of merit is significantly increased from 3.57 to 4.89 at 900 K. On the contrary, the

figure of merit is underestimated for p-type doped ZrI2 monolayers.
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