Supplementary Information

Tunnel Barrier to Spin Filter: Electronic Transport Characteristics of Transition Metal Atom Encapsulated in Smallest Cadmium Telluride Cage

Kashinath T Chavan^{a,b}, Sharat Chandra^{a,b} and Anjali Kshirsagar^c

^aMaterials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India. ^bHomi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India ^cDepartment of Physics, Savitribai Phule Pune University, Pune 411 007, India.

Figure S1. Eigenstates corresponding to (a) HOMO-1, (b) HOMO, (c) LUMO and (d) LUMO+1 energies of sandwiched Cd_9Te_9 cluster [iso value: 0.1]. The results are identical for up and down spins, as expected. The Cd atoms are in magenta, Te in olive green and Au in yellow.

Figure S2. Spin resolved, orbital projected (TM *s*, *p*, *d*) device density of states for TM atom(s) encapsulated in Cd_9Te_9 cage sandwiched between Au (111) electrodes. Plots in the 1st column (Cd *s* and Te *p*) correspond to a bare cage, a reference device. For each plot, energy ranges from -1.5 eV to 1.5 eV about the respective Fermi energy.

Ti

Cu

Zn

Ru

Rh

Figure S3: Transmission eigenstates for the device with respective TM atom encapsulated in Cd_9Te_9 cage at Fermi level for (a) up and (b) down spins. (iso value: 0.4).

ТМ	Transmission Eigenvalues (in eV) × 10 ⁻²					
	Up spin	Down spin				
Ti	0.573	3.640				
V	1.728	2.340				
Cr	6.335	29.57				
Mn	3.819	18.66				
Fe	0.634	1.090				
Со	1.368	2.326				
Ni	0.205	0.256				
Cu	1.560	1.560				
Zn	43.24	43.24				
Ru	0.742	18.00				
Rh	0.192	0.193				
Pd	6.165	6.180				

Table ST1: Transmission eigenvalues for device of TM atom(s) encapsulated in Cd₉Te₉ cage at Fermi level for up and down spins.

TM	Isolated Cluster			In Device			Spin Polarization change (%)		
1 1/1	Total charge $(\uparrow + \downarrow)$			Difference (↑ - ↓)	Total charge $(\uparrow + \downarrow)$		Difference (↑ - ↓)	from cluster to device	
	Cd	Te	TM	TM (A)	Cd	Te	ТМ	TM (B)	100(A - B)/B
CdTe(12,6)	11.77	6.22	-	-	11.78	6.17	-	-	
Ti(4)	11.79	6.20	4.06	1.90	11.79	6.16	4.07	2.20	-15.8
V(5)	11.81	6.21	4.83	3.73	11.81	6.17	4.89	3.44	8.0
Cr(6)	11.84	6.20	5.64	5.17	11.85	6.15	5.64	5.02	2.9
Mn(7)	11.82	6.20	6.86	4.89	11.83	6.15	6.85	4.65	4.8
Fe(8)	11.80	6.20	7.93	3.63	11.81	6.16	7.88	3.28	9.8
Co(9)	11.82	6.19	8.92	2.48	11.81	6.16	8.97	2.17	12.5
Ni(10)	11.82	6.19	9.92	1.37	11.81	6.17	9.93	0.65	52.1
Cu(11)	11.78	6.18	11.34	0.00	11.78	6.16	11.36	0.00	0.0
Zn(12)	11.79	6.20	12.04	0.00	11.80	6.15	12.06	0.00	0.0
Ru(8)	11.78	6.19	8.27	1.97	11.77	6.14	8.52	0.65	66.7
Rh(9)	11.77	6.19	9.36	0.67	11.76	6.15	9.47	0.00	99.7
Pd(10)	11.74	6.20	10.52	0.00	11.74	6.16	10.67	0.00	0.0

Table ST2: Total electronic population on each atom in TM encapsulated Cd_9Te_9 cluster in isolated form and as a part of device. Total charge is addition of up and down spins, whereas the difference of the up and down spins shows the extent of spin polarization. The % change in spin polarization is the difference in the up and down spin populations of the TM atoms. The numbers are obtained from Mulliken analysis.