Supporting Information

Two-dimensional metal phase layered molybdenum disulfide for electrocatalytic hydrogen evolution reaction

Hang Zhang,^a Xuejian Xiao,^a Hualan Xu,^c Lei Wang,^a Yuan Li,^a Chuying Ouyang*^b and Shengliang Zhong*^a

 ^aResearch Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China
^bDepartment of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang, 330022, P.R. China.
^cAnalytical and Testing Center, Jiangxi Normal University, Nanchang, 330022, P.R. China.

Fig. S1. Photos of MBS precursor solutions (a), FT-IR pattern (b) and XRD pattern (c) after 6 h at room temperature (25 °C) with different $V_{DIW/FA}$ (R = 1, 2, 3, 5, 9 and 14).

Fig. S2. XRD pattern (a) and yield (b) of products with different $V_{DIW/FA}$ (R = 1, 2, 3, 5, 9 and 14).

Fig. S3. Contact angle of products with different $V_{DIW/FA}$ (R = 1, 2, 3, 5, 9 and 14).

Fig. S4. LSV curves of MW-MoS₂ prepared with different $V_{DIW/FA}$ (R = 1, 2, 3, 5, 9 and 14).

Fig. S5. TEM images (a-b), EDX pattern (c) and XPS spectra of Mo 3d (d) of MBS.

Fig. S6. XRD pattern of the corresponding products prepared at different reaction times and reaction temperatures.

Fig. S7. SEM images of 2H-MoS₂ (a-b), HT-MoS₂ (c-d) and MW-MoS₂ (e-f).

Fig. S8. S_{BET} of 2H-MoS₂ (a), HT-MoS₂ (b) and MW-MoS₂ (c).

Fig. S9. SAED pattern of MW-MoS₂.

Fig. S10. Survey XPS patterns of 2H-MoS₂, HT-MoS₂, and MW-MoS₂.

Fig. S11. XPS spectra of S 2p of 2H-MoS₂, HT-MoS₂ and MW-MoS₂.

Fig. S12. XPS spectra of O 1s of MW-MoS $_2$.

Fig. S13. CV plots of non-Faraday regions for MW-MoS₂ (a), HT-MoS₂ (b) and 2H-MoS₂ (c); the corresponding C_{dl} values were obtained at 0.35 V (vs RHE) and at different scan rates for the current density (Δj) (d).

Fig. S14. HER polarization curves of MW-MoS $_2$, HT-MoS $_2$ and 2H-MoS $_2$ catalysts normalized by the ECSA.

Fig. S15. Hydrogen absorption site model of 1T-MoS₂: a: Top, b: Side, c: DOS; Hydrogen absorption site model of 2H-MoS₂: d: Top, e: Side, f: DOS.

Material	Preparation method	Reaction temperature (°C)	Reaction time (h)	Reference
MW-MoS ₂	microwave method	200	0.5	This work
1T-MoS ₂ /CC	hydrothermal route	220	24	<i>Appl. Catal. B: Environ.</i> 2019 , <i>246</i> , 296-302.[1]
1T-MoS ₂	electrochemically intercalate		48	<i>Nature Nanotech.</i> 2015, 10, 313-318.[2]
M-MoS ₂	hydrothermal process	200	12	Nat. Commun. 2016, 7, 10672.[3]
Li _x MoS ₂	chemically embedded and exfoliated	_	48	Nano Lett. 2011, 11, 5111-5116.[4]
1T-MoS ₂	chemically exfoliate	25	168	Nat. Chem. 2015, 7, 45- 9.[5]
1T@2H MoS ₂	hydrothermal route	200/220	24	<i>Catal. Sci. Technol.</i> 2017, 7, 5635-5643.[6]
1T-MoS ₂	chemically embedded and exfoliated	—	49	ACS Energy Lett. 2018, 3, 7-13.[7]

Table S1. Comparison of several existing methods for the preparation of 1T-MoS₂.

Table S2. The content of elements by XPS.

Sample	Percent of Mo (%)	Percent of S (%)	Percent of O (%)
MW-MoS ₂	33.12	62.58	4.30
HT-MoS ₂	30.40	66.23	3.37
2H-MoS ₂	33.84	63.53	2.63

Reference

- Z. Liu, L. Zhao, Y. Liu, Z. Gao, S. Yuan, X. Li, N. Li, S. Miao, Appl. Catal. B: Environ. 246 (2019) 296.
- [2] M. Acerce, D. Voiry, M. Chhowalla, Nature Nanotech. 10 (2015) 313.
- [3] X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, T.-p. Chen, Nat. Commun. 7 (2016) 10672.
- [4] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11 (2011) 5111.

- [5] D. Voiry, A. Goswami, R. Kappera, C. e Silva Cde, D. Kaplan, T. Fujita, M. Chen, T. Asefa, M. Chhowalla, Nat. Chem. 7 (2015) 45.
- [6] Y. Liu, Y. Xie, L. Liu, J. Jiao, Catal. Sci. Technol. 7 (2017) 5635.
- [7] N.H. Attanayake, A.C. Thenuwara, A. Patra, Y.V. Aulin, T.M. Tran, H. Chakraborty, E. Borguet, M.L. Klein, J.P. Perdew, D.R. Strongin, ACS Energy Lett. 3 (2018) 7.