Supporting Information

Achieving ultrastability and efficiency lithium storage capacity of high-energy

iron (II) oxalate anode materials through compositing Ge nano-conductive sites

Tingyu Song ^{a, b}, Geng Gao ^{a, b}, Dingfang Cui ^c, Chong Wang ^c, Hui Zhang ^{a, b}, Feng Liang ^{a, b}, Bin Yang ^a, Keyu Zhang ^{a, b, *}, Yaochun Yao ^{a, b, *}

- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
 - b. National Local Joint Engineering Laboratory of Lithium Ion Battery and Material Preparation Technology, Kunming University of Science and Technology, Kunming, 650093, China.
 - c. Yunnan Chihong International Germanium Industry Co., Ltd., Qujing 655011, China.

1. Results and discussion

Fig. S1 SEM of FCO@Ge material and its local enlargement.

^{*} Corresponding author. National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, China E-mail address: yaochun9796@163.com (Pro. Y. Yao)

Fig. S2 Charge and discharge curves of FCO (a), FCO@Ge-1 (b), FCO@Ge-3 (c), and FCO@Ge-

5.