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Table 1 The electrical transport properties of ZnO:Sb MW and 

ZnO film. 

 

Theoretical distribution width of depletion regions.[1] 

The theoretical distribution width of depletion in p-ZnO:Sb region ( :ZnO Sbw ) and in n-

ZnO region ( ZnOw ) can be evaluated through the formula: 
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Category Mobility (cm2V−1s−1) Carrier concentration (cm−3) 

ZnO:Sb MW 2.6 5.4×1017 

ZnO film 5.0 1.0×1019 

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2022



 2 / 10 
 

Where ZnO  is relative dielectric constants of ZnO (∼8). :ZnO Sbn  (∼5.4ൈ1017) and 

ZnOn  (∼1.0ൈ1019) are carrier concentrations. inV  is the built-in voltage (∼2.0 V), 0  

is the permittivity of vacuum, and e  is elementary charge. From (1) and (2), ZnOw  

is calculated as 3.0 nm, and :ZnO Sbw  is calculated as 55.8 nm. 

 

Figure S1. Schematic architecture of the as-designed p-ZnO:Sb MW/n-ZnO film 

homojunction photodetection device. (b) Optical photography of the as-designed p-

ZnO:Sb MW/n-ZnO film homojunction photodetection device. (c) Enlarged view of 

the selected area. 

 

Figure S2. (a) I-V characteristic curves of Au-ZnO:Sb MW contact under dark and UV 

illumination. (b) I-V characteristic curves of ZnO film structure with Au interdigital 

electrodes under dark and UV illumination. 
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Figure S3. The I-V characteristic curve of a p-ZnO:Sb MW/n-ZnO homojunction PD 

under 365 nm illumination (~ 60 μW/cm2). 

 

 
Figure S4. Energy band structure diagram of p-ZnO:Sb MW/n-ZnO homojunction PD. 

(a) under thermal equilibrium at zero bias; (b) under 365 nm illumination at zero bias; 

(c) under 365 nm illumination at a reverse bias.  
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Figure S5. (a) Absorption spectra of single ZnO:Sb MW. (b) The corresponding optical 

bandgap of ZnO:Sb MW. 

 

Figure S6. By varying the thickness of the inserted MgO interlayer, logarithmic I-V 

curves of as-constructed p-ZnO:Sb MW/i-MgO/n-ZnO homojunction PDs in darkness 

and 365 nm light illumination. (a) without MgO; (b) 5 nm MgO; (c) 10 nm MgO; (d) 

15 nm MgO. 
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Figure S7. (a) The relationship between photocurrent, dark current and MgO thickness 

of as-constructed p-ZnO:Sb MW/i-MgO/n-ZnO homojunction PDs at -1V bias; (b) The 

relationship between on/off ratio and MgO thickness of as-constructed p-ZnO:Sb 

MW/i-MgO/n-ZnO homojunction PDs at -1V bias; (c) The relationship between 

photocurrent, dark current and MgO thickness of as-constructed p-ZnO:Sb MW/i-

MgO/n-ZnO homojunction PDs at 0 V bias; (d) The relationship between on/off ratio 

and MgO thickness of as-constructed p-ZnO:Sb MW/i-MgO/n-ZnO homojunction PDs 

at 0 V bias. 
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Figure S8. The I-V characteristic curve of a p-ZnO:Sb MW/i-MgO/n-ZnO 

homojunction PD in darkness. 

 

 

Figure S9. Comparison of the calculated EQE of the fabricated homojunction devices 

without applied bias. 
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Figure S10 (a) Transient photoresponse of the p-ZnO:Sb MW/n-ZnO PD under 365 nm 

pulse laser illumination at the bias of 0 V. (b) Single period of the pulse response of the 

p-ZnO:Sb MW/n-ZnO PD. (c) Transient photoresponse of the p-ZnO:Sb MW/i-MgO/n-

ZnO PD at 0 V bias under 365 nm pulse laser illumination at the bias of 0 V. (d) Single 

period of the pulse response of the p-ZnO:Sb MW/i-MgO/n-ZnO PD. 

 



 8 / 10 
 

 
Figure S11. The energy band diagrams of p-ZnO:Sb, i-MgO[2-4] and n-ZnO before 

contact. 

The stability of the fabricated p-ZnO:Sb MW/MgO/n-ZnO homojunction 

photodetector is critical to meet real-world applications. In general, the stability of 

photodetectors can be divided into their photostability and long-term stability. First, 

photostability is evident from the transient switching response of the as-constructed 

homojunction photodetector. The photoswitching responses were recorded for a 

constant operation at zero bias under 365 nm light illumination with an optical power 

intensity of 2.5 mW/cm2. As illustrated in Figure S12(a), the detector exhibits stable 

and reproducible ON/OFF behavior over 400 consecutive cycles, especially for 

electrically stable features. Subsequently, the as-prepared p-ZnO:Sb MW/MgO/n-ZnO 

homojunction photodetector was kept in an air environment with 50% humidity for 

about 100 days, while without any encapsulation and protection. During the stored 

procedure, we conducted a stability measurement of the fabricated photodetector, 

observing its photoswitching responses when measured at 0 V under 365 nm 
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illumination via light power intensity ~2.5 mW/cm2. The measured time-domain 

response of the device over a series of ON/OFF switching cycle, as seen in Figure 

S12(b). It suggests that the photodetector maintained a good electrical stability. The 

experimental results suggest that the proposed photodetector is suitable for long-term, 

highly reliable ultraviolet photodetection. 

 

Figure S12. Photostability and long-term stability measurement of our p-ZnO:Sb 

MW/MgO/n-ZnO homojunction photodetector. (a) 400 cycles of transient 

photoresponse curve of the fabricated photodetector under 365 nm light illumination of 

2.5 mW/cm2 in a self-powered manner. Inset: Enlarged 4 cycles photoresponse curves. 

(b) Long-term test of the photoswitching features of the fabricated device (~ 100 days). 
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