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S1. Methods

S1.1. Observable geometry: Numerical sample generation

We generate two-dimensional numerical samples using a Monte Carlo procedure. Each realization, denoted as

‘observable geometry’, is de�ned in a L × L domain containing nanowires (NWs) of length lw represented as widthless

sticks (i.e., line segments). Sticks are free to intersect and are placed in the domain with no preferential orientation

(random arrangement). The middle point coordinates and orientation angle of each stick are extracted from a uniform

probability distribution. During the generation of the observable geometry, portions of segments intersecting the

domain edges are cut at the intersection point and moved to the opposite edge, resulting in a periodic arrangement

of segments (Fig. 1a). The stick density n (eqn (1)) quanti�es the number of NWs Nw contained in the observable

geometry.

S1.2. Percolation network

A percolation detection procedure is performed on each observable geometry. To determine if an observable

geometry is percolated, contacting sticks are grouped into clusters [1]. A cluster is a collection of contacting sticks.

Two sticks are in contact if they intersect. An observable geometry is percolated if a ‘percolating cluster’ is detected (a

percolating cluster is therefore a cluster spanning across two opposite edges of the numerical sample). The ‘percolation

network’ is the union of ‘percolating clusters’, should they exist. The percolation network (Fig. 1b) is a subset of the

sticks of the observable geometry.

S1.3. Electrical response evaluation

The percolation network is converted into an equivalent resistor network to determine the corresponding electric

current intensity map (Fig. 1c) and e�ective current Ie� . Stick segments not belonging to the percolation network do not
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contribute to the conduction process and are merely disregarded. For the purpose of electrical conduction evaluation

only, NWs are regarded as right circular cylinders of diameter dw. The NW resistance is calculated as Rw = lw/(κwAw),
where κw is the material conductivity and Aw = πd

2
w/4 is the cross-sectional area of the NW. The value of dw is not

considered for the areal coverage computation and a�ects subsequent evaluations exclusively through Rw.

The resistor network is de�ned through nodes and resistor elements. Nodes are generated at i) intersection

points between sticks and edges of the domain, and ii) intersection points between two sticks. In the �rst case, a

single node is created at each intersection. Boundary conditions are applied at nodes on the edges of the domain

(representing NWs in contact with external electrodes [2, 3]). In the second case, a couple of nodes with the same

spatial coordinates is introduced and each node is associated to either one of the intersecting sticks (duplicated-node

approach). A contact resistor element with resistance Rj connects the couple of nodes. Stick segment resistor elements

of resistance Rs = ls/lw Rw connect adjacent nodes on a stick, being ls distance between adjacent nodes along the stick.

We assign the same value of Rj to all contact elements. Although the duplicated-node approach allows to address

all possible resistance scenarios ranging from stick-dominated to junction-dominated, its use is not recommended

when Rw � Rj. Numerical simulations concerning scenario Rw � Rj are performed generating a single node at

the intersection between sticks (single-node approach). Since the node is shared by the two intersecting sticks, the

single-node approach is equivalent to the duplicated-node approach with Rj = 0 but is numerically more robust. In

summary, two equivalent resistor networks are generated from each percolated network using di�erent approaches:

the duplicated-node approach and the single-node approach. The former is used when Rw = Rj and Rw � Rj, the

latter when Rw � Rj. Contact resistors elements are not introduced at the intersection between stick and edges in any

case. The stick segments of the original geometry are reduced to sub-segments at this stage (Fig. 1c). The values of κw
and Rj are duly selected to meet the conditions representing each of the three resistance scenarios in the numerical

simulations (refer to Table S2 for details).

Application of Kirchho�’s laws to the elements in the network leads to a system of linear equations [4] which is

obtained by using standard Finite Element Method procedures [5]. The element resistance Re is equal to Rj and Rs

for contact and segment resistor elements, respectively. A potential di�erence ∆V is applied between nodes that

belong to a pair of opposite edges of the domain (Dirichlet boundary condition), while the electric current is set to

zero (Neumann boundary condition) on the nodes lying on the edges parallel to the direction of the applied potential

di�erence. Once the potentialv is known at all nodes, the electric current Ie �owing through each e-th resistor element

is computed as

Ie = (ve2 −ve1)/Re ,

beingve1 andve2 the electric potential of the nodes identifying the e-th element. The e�ective current �owing through

the network is

Ie� =
Ne∑
i

Ii ,

with the sum performed on the Ne resistor elements connected to one of the edges on which the electric potential is

set. We therefore evaluate the e�ective conductivity κe� of the electrode through eqn (2), which is suitable for an
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electrode of L × L surface and unit thickness. The power and the areal power density of the electrode are computed

through eqn 4 and 5, respectively.

When the percolation network is converted into an equivalent resistor network, the sticks of the percolation

network are split into stick segments (to be converted into stick segment resistor elements). The ‘conduction network’

is identi�ed as the current-carrying subset of the percolating network, that is, the stick segments of the percolation

network that actually participate to electronic conduction. Non-conducting (dangling ends) stick segments (Fig. 1c)

are identi�ed as the stick segments for which condition Ie < Ithreshold holds, being Ithreshold a threshold value below

which all currents are set to zero. We set Ithreshold = Ie� × 10−6 for convenience.

S1.4. Areal coverage evaluation

The numerical sample is divided with a grid of Nq × Nq quadrats (Figures 1d,e,f) with edges of length lq = L/Nq.

The ratio between the stick length and the length of the quadrat edge (i.e., lw/lq) de�nes the grid resolution.

The areal coverage is computed as the ratio Ncriterion/Nqt between the number of quadrats Ncriterion satisfying a

certain criterion and the total number of quadrats Nqt = N 2
q . In the analysis of observable geometry (Fig. 1a) and

percolation network (Fig. 1b), we count the quadrats either containing or intersected by at least a stick (Fig. 1d and

Fig. 1e, respectively). In the analysis of the conduction network (Fig. 1c), we count the quadrats that either contain or

are intersected by at least a resistor element e (contact or segment resistor element) such that the current �owing

through the element is Ie > Ithreshold (Fig. 1f). The analysis of the spatial distribution of the areal power density

is performed considering the quadrats whose areal power density Pq (eqn (6)) satis�es condition Pq > αfactor Pe� .

Figures 3 and 4 are obtained with αfactor ∈ [0, 3].
In the numerical implementation of this process, each item of the ensemble under examination (either segments

representing stick or resistor elements) is converted into sub-items identi�ed by i) the intersection points between

the item and the grid, and ii) the endpoints of the item (Figs. 1d,e,f and S1). Each sub-item is assigned to the quadrat

containing its midpoint. In the analysis of observable geometry, percolation network, and conducting network, a

quadrat is considered in the count of Ncriterion if it contains (at least) a sub-item.

The analysis of the areal power density is a more intricate process that involves the individual elements of the resis-

tor network. To conduct this analysis, segment resistor elements that intersect the grid lines are partitioned into smaller

sub-elements. Each portion of a segment resistor element i is a sub-element of length lse,i and power I 2i Rw lse,i/lw,

being Ii the electric current �owing through element i . The power of a contact resistor element j is I 2j Rj. The power

of the quadrat Pq is thus

Pq =
Rw
lw

Nr∑
i

I 2i lse,i + Rj

Nj∑
j

I 2j , (S.1)

that is, the sum of the power contributions of Nr portions of resistor segments plus Nj contact resistors lying in the

quadrat (refer to the next section for details). The calculation of the areal power density of the quadrat (i.e., Pq = Pq/l2q)

trivially follows.
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Fig. S1. Evaluation of the areal power density within a single quadrat. (a) Conduction network and electric current
intensity map are overlaid onto an electrode discretization with a grid resolution lw/lq = 2 (consisting of8×8 quadrats).
The numerical sample depicted in Fig. 1 is utilized, and the selected quadrat is shaded in green. (b) Nodes (full circles)
and resistor elements intersecting the selected quadrat. The current I �owing through each stick segment resistor
element is labeled through the couple of nodes identifying the element. (c) Sub-elements resulting from the intersection
of the resistor elements shown in panel (b) with the boundaries of the selected quadrat. The intersection points (empty
circles) are labeled with small letters consistent with the labels of the nodes that identify the elements. The portions
of stick resistor elements outside the quadrat are shaded in gray.

S1.5. Areal power density evaluation

The procedure is elucidated considering junction resistor elements (duplicated-node approach according to

section S1.3). Figure S1a shows the conduction network extracted from the observable geometry depicted in Fig. 1a

and its current intensity map. A lw/lq = 2 resolution grid is considered (8 × 8 quadrats).

Figure S1b shows the elements of the resistor network intersecting the quadrat selected for the description of

the overall procedure. The selected quadrat is highlighted in Fig. S1a (shaded in green). Four stick segment resistor

elements are identi�ed by couples of nodes A-B1, B2-C1, C1-D, and C2-E. Nodes B2 and C2 are the replicas of node B1

and C1, respectively. Two junction resistor elements are de�ned by the couple of nodes B1-B2 and C1-C2. No junction

element is introduced between stick segment elements B2-C1 and C1-D because they represent adjacent portions of

the same stick (refer to the observable geometry of Fig. 1). Stick segment resistor elements and the current I �owing

through them are labeled using the couple of nodes identifying the element.

Figure S1c shows the sub-elements resulting from the intersection of the stick segment resistor elements shown in

Fig. S1b with the boundary of the selected quadrat. The intersection points are labeled with a, d, and e according

to the capital letters used for the nodes and identify the elements that fall outside the selected quadrat. Expressing

with lB2C1 the length of element B2C1, and with laB1 , lC1d, and lC2e the lengths of the sub-elements, eqn (S.1) reads

Pq =
Rw
lw

(
I 2AB1

laB1 + I
2
B2C1

lB2C1 + I
2
C1D lC1d + I

2
C2E lC2e

)
+ Rj

(
I 2AB1
+ I 2C2E

)
,

for the selected quadrat (notice that IB2C1 = IAB1 ). We employed the e�cient MATLAB implementation for segment

intersection detection provided by Erdem [6].

Numerical simulations concerning scenario Rw � Rj are performed adopting the single-node approach. In this
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case, no duplicated nodes are introduced at the contact points between di�erent sticks. Considering the example

discussed so far, nodes B and C replace the couple of nodes B1-B2 and C1-C2, respectively. Adapting the notation

accordingly, the equation above simpli�es to

Pq =
Rw
lw

(
I 2AB laB + I

2
BC lBC + I

2
CD lCd + I

2
CE lCe

)
.

The areal power density of the quadrat is evaluated as Pq = Pq/l2q for both single- and duplicated-node approaches.

S2. Macroscopic characterization of nanowire electrodes

The macroscopic characterization of nanowire network electrodes (NW electrodes) is described in this section.

The identi�cation of the percolation threshold is treated �rst. The relationship between e�ective conductivity κe� ,

stick density n, and ratio Rw/Rj is discussed next. Even if the arguments presented in this section constitute no novelty,

they are relevant for two main reasons. First, the comparison against established results allows to verify the numerical

framework for i) the generation of the observable geometries, ii) their conversion into equivalent resistor networks,

and iii) the computation of the electric current �owing through the network. The veri�cation of these components of

the framework is important because the overall homogeneity assessment relies on them. Second, the e�ective areal

power density Pe� is determined through eqs 4 and 5 using e�ective current Ie� and applied potential ∆V . Since the

e�ective current Ie� is trivially obtained from the e�ective conductivity κe� through eqn (2), the data provided in

this section integrate the description of the electrical homogeneity assessment. The results are presented in terms

of κe� to ease the comparison against available analytical solutions, as described in the following paragraphs. Our

analysis is based on the simplifying assumption that the e�ective conductivity is independent of the applied potential,

a condition which is not necessarily met in real electrodes as demonstrated, for example, by Sannicolo et al. [7].

The observable geometry is employed for the identi�cation of the percolation threshold. Numerical realizations

are generated according to the procedure described in section S1.1. To determine if an observable geometry forms

a percolation network, the sticks are grouped into clusters [1]. Two sticks are assigned to the same cluster if they

intersect. The observable geometry is percolated if at least one cluster extends between two opposite edges of the

domain. The percolation network coincides with the union of the clusters extending between two opposite edges of

the domain (Fig. 1). Numerical simulations are performed with domain size ranging between L = 4lw and L = 16lw
according to the setting listed in Table S1. For the percolation threshold investigation, we generate 500 numerical

realizations for each value of stick density (and for each domain size). The search for the percolation network is

performed along x and y directions.

Figure S2a shows the cumulative percolation probability curve, i.e., the probability of a specimen to be percolated

versus the stick density n. The cumulative percolation probability curves obtained for the x- and y-directions (and for

the same set of specimens) show no appreciable di�erences. We thus report the results that refer to the x-direction only.

Following the approach of Finner et al. [9], we identify the percolation threshold as the value ofn at the crossing point of

the curves obtained with domains of di�erent size. According to Fig. S2a, we estimate a percolation threshold nc = 5.64,
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Table S1. Simulation settings for the identi�cation of the percolation threshold.

domain size stick density range (n)

L = 4lw 2 - 11a

L = 8lw 2.5 - 9.5a

L = 16lw 3 - 8.5a

a Numerical simulations are performed at stick density values sampled within the stick density
range indicated with increment size equal to 0.5.
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Fig. S2. Macroscopic characterization of the NW electrodes. (a) Percolation probability versus stick density for domain
sizes L = 4lw, 8lw and 16lw. The percolation probability represents the proportion of percolated samples out of the 500
realizations created for each combination of domain size and stick density n. It is calculated by dividing the number
of percolated samples by the total number of samples generated. The numerical simulation setting is described in
Table S1. (b) Normalized conductivity κe�

(
Rw + Rj

)
versus stick density for three resistance scenarios. Details about

the numerical simulation settings are given in Table S2. Numerical simulations are performed with domain size L = 4lw
(continuous lines and full circles). Each circle represents the average of 100 realizations. Two sets of results obtained
with analytical expressions are included for reference: dashed lines represent the results obtained using the inverse of
the sheet resistance obtained through eq 6 by Forró et al. [8]; dotted lines represent the results obtained through eq 7
by Žeželj and Stanković [2]. The same color is used to identify the same resistance scenario.
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Table S2. Numerical simulation settings for e�ective conductivity identi�cation and spatial assessment.

resistance parameter symbol value(s)

geometry NW lengtha lw 35 µm
NW diametera,b dw 6.5 × 10−2 µm
domain size L 4lw

stick density n 6 - 42c

boundary conditions potential di�erenced ∆V 1V

material propertiesb Rw � Rje NW conductivity κw 7.032 × 106 Sm−1
(stick-dominated) contact resistance Rj 0

Rw = Rjf NW conductivity κw 7.032 × 106 Sm−1
(equally contributing) contact resistance Rj 1500Ω

Rw � Rjg NW conductivity κw 5.0 × 1010 Sm−1
(junction-dominated) contact resistance Rj 1500Ω

spatial assessment grid resolutionh lw/lq 1 - 32
a Value selected according to Jagota and Tansu [11].
b We assume each NW is described as a straight right circular cylinder, of diameter dw and electronic

conductivity κw, and compute its resistance as Rw = lw/(κw Aw) being Aw = πd2
w/4 the cross-sectional

area of the NW.
c Numerical simulations are performed with stick densities sampled at n = 6, 12, 18, 24, 30, 36, and 42.

The number of realizations (observable geometries) generated for each value of stick density is 100.
d This value is provided for completeness only. As we assume a linear response of the conduction network,

the overall electrical homogeneity assessment is independent of the actual value of ∆V .
e Numerical simulations are performed with the single-node approach described in the section S1.3.
f Numerical simulations are performed with the duplicated-node approach described in section S1.3.
g Numerical simulations are performed with the duplicated-node approach described in section S1.3.

Material properties are selected to ensure that Rw/Rj ≈ 1/7000 in the numerical simulations. Increasing
the value of κw while keeping Rj unchanged does not lead to appreciable di�erences in terms of
normalized conductivity κe� (Rw + Rj). The relationship between κe� (Rw + Rj) and stick density n for
each resistance scenario is shown in Fig. S2b.

h Spatial assessment is performed with grid resolutions lw/lq = 1, 2, 4, 8, 16, and 32.

which is in perfect agreement with the value identi�ed by Li and Zhang [10] (they report nc = 5.63726).

The percolation network is converted into an equivalent resistor network adopting the procedure described in

section S1.3. We compute the e�ective conductivity of the electrode as κe� = Ie�/∆V (eqn (2)), according to the

de�nition of conductivity adopted by Žeželj and Stanković [2] (refer to footnote 30 therein). Numerical simulations

are performed with the setting described in Table S2, and 100 realizations are generated for each value of stick density

(and for each resistance scenario). The analysis is performed along x and y directions.

Figure S2b shows the normalized e�ective conductivity κe�
(
Rw + Rj

)
versus stick density n for three resistance

scenario: Rw � Rj (stick-dominated), Rw = Rj (equally contributing), and Rw � Rj (junction-dominated). Each circle

in the plot is the average of 100 realizations (the conductivity of non-percolated samples is considered to be equal

to zero). The results of the analytical expressions derived by Forr’o et al. [8] and Žeželj and Stankovi’c [2] (shown

as dashed and dotted lines, respectively) are compared with the e�ective conductivity. The comparison against the

conductivity determined through eq 7 by Žeželj and Stanković [2] is straightforward, while Forró et al. [8] consider

the sheet resistance. Notice that, according to the de�nition adopted in this study, the e�ective conductivity (eqn (2))

is equivalent to the inverse of the sheet resistance (Re� according to our eqn (S.9), Rs according to Forró et al. [8]).

Since our results fall within the range identi�ed by the two analytical solutions (the relative di�erence between

our results and each analytical solution is 11% at the most), we conclude that our numerical framework for the
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e�ective conductivity evaluation is veri�ed. We observe that, analogously to the percolation threshold, the e�ective

conductivity cannot be distinguished when evaluated either in x or y direction. We thus conclude that the macroscopic

response of the generated samples is, on average, isotropic.

The size of the numerical simulation domain is known to a�ect the prediction of NW electrode properties (refer,

for example, to Žeželj and Stanković [2] and Li and Zhang [10]). This aspect also emerges from Fig. S2a, where the

insulator-to-conductor transitions becomes sharper as the domain size L/lw increases. Han et al. [12] perform a

numerical investigation to identify the size of the representative volume element (RVE) for two-dimensional nanowire

electrode simulations. That is, the smallest domain size whose e�ective properties represent (with a certain accuracy)

the macroscopic response of the electrode. Han et al. [12] conclude that RVEs of size L/lw ranging between 50 and 100

are best suited for the evaluation of the electrode e�ective properties at n ≈ nc; however, ‘far from the percolation

threshold’ (they consider nanowire content equivalent to n = 5nc at the most) a simulation domain of size L/lw
ranging between 3 and 6 is appropriate. The results by Han et al. [12] (their Figs. 7 and 8) show that at n ≈ 2nc
the e�ective properties are basically equivalent to the actual macroscopic properties if the simulation domain size

is L ≥ 4lw (if the aspect ratio of the NWs is lw/dw ≥ 100). All the numerical results of this contribution are obtained

with a domain size L = 4lw (the percolation threshold investigation represents the only exception). The selection of

the domain size was based on a trade-o� between computational cost and accuracy and taking into account prior

research. Jagota and Tansu [11], for example, perform a numerical investigation about the relationship between stick

orientation and e�ective conductivity. They also employ two-dimensional domains of size L = 4lw. Kim and Nam [13]

perform a numerical investigation on the conductivity of silver nanowire (AgNW) networks making use of digital

domains of size L ranging between 5 lw and 15 lw. In the same contribution, the size of the simulation domains is

reduced to L = 3lw when the numerical model is compared against experimental observations. Kim and Nam [14] also

show that numerical estimates of the electrical conductivity obtained with digital domains of size between L = 5lw
and 15lw are similar. Langley et al. [15] show that a domain of size L ≈ 4lw leads to a perfect agreement between

theoretically estimated resistance and experimentally measured resistance for AgNW networks employed in solar cell

applications (Fig. 6a in [15]). Furthermore, Fig. S2b shows the e�ective conductivity computed with the analytical

solution by Žeželj and Stanković [2] (with L/lw = 4), and we observe no appreciable di�erence by performing the

calculations with L/lw > 4. These considerations suggest that a domain size L = 4lw is a reasonable choice. A domain

of size L = 4 lw is also consistent with experimentally available data by Sannicolo et al. [7] (refer to the validation

procedure described in sections 2.3 and S5). A few extra comments about it are given in the following sections.

S3. Areal coverage of the observable geometry: Analytical prediction

The areal coverage of the original geometry (Fig. 1) is related to the transparency of the electrode. Tarasevich et

al. [3] investigate the relationship between the number of sticks (‘zero-width rods’ in the reference) per unit area and

the transmittance of two-dimensional �lms with an approach analogous to the one described in section 2.2. They

generate two-dimensional realizations by distributing sticks randomly and uniformly over a square domain of size L.

The domain is then divided into Nq × Nq square cells of equal size lq = L/Nq, and cells that contain at least a (portion
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of a) stick are considered ‘opaque’ (they are considered transparent otherwise).

Tarasevich et al. [3] compute the transmittance of the �lm as

T = 1 − p, (S.2)

where p is the fraction of opaque cells, and they propose the analytical expression given by

T =

(
1 − 1

N 2
q
− αT lw

L

1
Nq

)Nw

(S.3)

to express the dependence of transmittance on stick length lw, domain size L, number of sticks Nw, and number

of quadrats Nq, with αT = 4/π for a distribution of randomly oriented sticks. Since the fraction of opaque cells p

is exactly equivalent to the areal coverage C (eqn (3)) of the observable geometry, we make use of the analytical

expression identi�ed by Tarasevich et al. [3] for the veri�cation of our numerical framework. Substitution of eqn (S.3)

into eqn (S.2) while accounting for relationships n = Nw l
2
w/L2 and lq = L/Nq allows to express p as

p = 1 −
[
1 −

(
lw
L

)2 (
lq

lw

)2
− αT

(
lw
L

)2 lq

lw

]n (
L

lw

)2
. (S.4)

Figure 2a shows the results of eqn (S.4) for L/lw = 4 and for stick densityn ranging from 6 to 42 and grid resolution lw/lq
ranging between 1 to 32. Figure 2a shows that the areal coverage of reference Cref determined with our numerical

framework perfectly agrees with the results of eqn (S.4), thus providing a veri�cation of our numerical implementation.

S4. Homogeneity index: Evaluation details

The electrical homogeneity of the electrode is assessed through the homogeneity indexH . This scalar quanti�es

the extent of the deviation of the response of the electrode from the homogeneous reference response.

For a given value of the stick density n, we compute the areal coverage for di�erent values of areal power

density threshold and grid resolution. We sample C/Cref on a two-dimensional mesh resulting from combinations of

values of Pq/Pe� in [0, 3] at spacing 0.1 (spacing is set to 0.2 for the experimentally obtained geometries) and values

of log2(lw/lq) in [0, 5] with spacing 1. The contour maps in Figs. 3, 4, S5, and S6 show the result of the sampling for a

selection of stick densities.

We convert the discrete collection of values into a continuous function through linear interpolation. The values

of the areal coverage de�ne a surface over the bi-dimensional domain
(Pq/Pe� , log2(lw/lq)) ∈ [0, 3] × [0, 5]. Con-

sidering log2(lw/lq) in place of lw/lq we ensure that C/Cref evaluated for di�erent values of grid resolutions lw/lq
equally contribute to the resulting homogeneity index. Values of C/Cref obtained at higher resolution would be more

in�uential otherwise. The surface is described through a function fC such that

fC (s, t) ∈ [0, 1], ∀(s, t) ∈ [0, 3] × [0, 5],
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where variables s and t are used in place of Pq/Pe� and log2(lw/lq), respectively. The shape of the surface is

representative of the response of the system.

According to eqn (8) the surface describing the homogeneous response is

fC, homog (s, t) =

1, if s < 1, ∀t ∈ [0, 5], and

0, if s ≥ 1, ∀t ∈ [0, 5],

and the integral over the range of values explored is

Ihomog =

∫ 5

0

∫ 3

0
fC, homog (s, t) ds dt = 5. (S.5)

We thus evaluate the deviation of the electrode response from the homogeneous response as

H = 1
Ihomog

∫ 5

0

∫ 3

0

��fC (s, t) − fC, homog (s, t)
�� ds dt . (S.6)

The (equivalent) form

H = 1
Ihomog

∫ 5

0

∫ 1

0
| fC (s, t) − 1| ds dt + 1

Ihomog

∫ 5

0

∫ 3

1
| fC (s, t)| ds dt (S.7)

is more convenient if numerical integration is performed, which is the case here.

Notice that the actual value ofH depends on factors such as the range of values
(Pq/Pe� , log2(lw/lq)) explored

and the sampling intervals. Relative comparison (e.g., trend ofH versus n for di�erent values of ratio Rw/Rj) are thus

more informative than the mere value ofH .

S5. Experimental samples: Digitization and macroscopic characterization

We describe the numerical analysis performed on the experimentally obtained NW geometries [7] shown in Fig. 4a.

Each scanning electron microscopy (SEM) image shows a distribution of silver nanowires (AgNWs) and covers an

area of about 25 µm × 21.5 µm. After digitization, the AgNWs distributions are examined with the strategy proposed

in this work. A characterization of the digitized geometries is also performed and e�ective properties are determined.

The results are discussed by making reference to the characterization performed by Sannicolo et al. [7], which is based

on specimens with size 25 mm × 25 mm (‘entire sample’ from now on) from which the SEM images were extracted.

S5.1. Experimental samples: Digitization

Sannicolo et al. [7] obtained the electrical potential distribution of AgNWs electrodes by scanning 25 mm× 25 mm

specimens at 1 mm resolution through one-probe electrical mapping. Scanning electron microscope (SEM) images of

the specimens analyzed by Sannicolo et al [7] are reported in Figs. 4a and S3a for three di�erent NW volume fractions.

The digital replicas of the NWs are superimposed to the SEM images in Fig. S3a. We represent NWs as sticks. For

the detection of the percolation network, we consider two NWs connected if the corresponding sticks intersect. To
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Fig. S3. Experimental samples: digitization and characterization. (a) SEM images of AgNW ensembles from Sannicolo
et al. [7] (the same as in Fig. 4a). Digital replicas made of sticks are superimposed to the original images (adapted
with permission from Sannicolo et al. [7]; copyright © 2018 American Chemical Society). (b) Square subsets of digital
replicas shown in panel (a). Sticks of the percolation cluster are represented with colored continuous line, sticks
disconnected from the percolation cluster are represented with gray dashed lines. The percolation clusters in x-
and y-directions coincide for each geometry. (c) Stick length distribution. Average length lavg are listed in Table S3.
(d) Sticks orientation distribution. Data in panels (c) and (d) refer to all the sticks in panel (b). Additional properties
are listed in Table S3.
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Table S3. Characterization of experimental samples from Sannicolo et al. [7].

reference property geometry sample
A1 A2 A3

Sannicolo et al. [7] AMD (mg m−2) whole specimena 50 ± 4 63 ± 7 86 ± 7
sheet resistance (Ω) whole specimena 68000 329 26

this study AMD (mg m−2)b Fig. S3ac 57 90 143
Fig. S3bd 57 90 146

lavg (µm) Fig. S3ac 4.99 5.14 4.79
Fig. S3bd 4.78 4.81 4.58

sheet resistance (Ω)e x -direction Fig. S3bd 189 139 73
y-direction Fig. S3bd 418 115 56

a The values refer to the 25 mm × 25 mm specimens analyzed by Sannicolo et al. [7]. SEM images
in Figs. 4a and S3a are 25 µm × 21.5 µm subsets of those specimens.

b Computed through eqn (S.8).
c Analysis performed on digital replicas superimposed to the SEM images shown in Fig. S3a.
d Analysis performed on geometries shown in Fig. S3b (square subsets of digital replicas in Fig. S3a).

The number of sticks in the geometries is 111 (A1), 162 (A2), and 285 (A3).
e Sheet resistance computed through eqn (S.9). Numerical simulations performed assuming NW

diameter dw = 79 nm (average value from Sannicolo et al. [7]), bulk conductivity κw = 63 ×
106 Sm−1, and contact resistance Rj = 500Ω. The values of κw and Rj are selected according
to material parameters from Forró et al. [8] for AgNWs with diameter (approximately) equal
to 80 nm (their Fig. 3h). The ratio Rw/Rj is equal to 3.096 × 10−2 (A1), 3.113 × 10−2 (A2),
and 2.968 × 10−2 (A3).

ease the comparison against the specimen description provided by Sannicolo et al. [7] we express the NW content in

terms of areal mass density

AMD =
ρAgANW

Asample

∑
i

lNW,i , (S.8)

where we assume that NWs are right circular cylinders of diameter dNW. In the expression above, ρAg = 10.50 g

cm−3 [16] is the density of silver, Asample ≈ 534 µm2 is the area of the sample (from the scale bar in the original images,

Figs. 4a and S3a), and lNW,i is the length of the i-th stick in Fig. S3a. The NW cross sectional area is ANW = πd
2
NW/4,

where dNW = 79 nm is the average NW diameter reported by Sannicolo et al. [7].

Table S3 lists AMD values computed with eqn (S.8) for the digitized geometries shown in Fig. S3a as well as AMD

values determined by Sannicolo et al. [7]. Note that the SEM images shown in Figs. 4a and S3a represent subsets

(25 µm × 21.5 µm size) of the entire samples experimentally characterized. The AMD values computed in this work

exceed those found in Sannicolo et al. [7] irrespective of the sample (Table S3). Although modest for sample A1, the

di�erence is signi�cant for samples A2 and A3 (up to 66% relative di�erence). Since the digital replicas shown in

Fig. S3a and the SEM images from Sannicolo et al. [7] show modest di�erences despite the straight sticks approximation,

we conclude that the microstructures in the SEM images are not strictly representative of the entire samples analyzed

by Sannicolo et al. [7]. This conclusion is supported by the fact that we identify an average length of the sticks lower

than that reported by Sannicolo et al. [7] (Table S3). We �nd that the average stick length lavg is about 5 µm (refer to

Table S3), while Sannicolo et al. [7] report an average NW length of 7 ± 3 µm. The representativeness of the SEM

images is further discussed at the end of this section.

Although spatial analyses based on grid discretization are suitable for rectangular domains, we chose to operate

on square domains to ensure a direct comparison with the results of the spatial analyses performed on numerically
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generated samples (Figs. 2 and 3). Figure S3b shows the square subsets extracted from the geometries shown in

Fig. S3a. The square subsets (Fig. S3b) are obtained by virtually scanning the geometries shown in Fig. S3a with a

square window (with edge equal to the height of the original geometry) and identifying the subset that minimizes the

areal mass density. We obtain square subsets with stick distributions (Figs. S3c,d) perfectly consistent with those of

the original geometries (not reported for brevity). AMD values are consistent with those obtained from the geometries

in Fig. S3a (values reported in Table S3), and similar arguments apply to the average stick length lavg (also reported in

Table S3).

To draw a parallel with the results shown in Fig. 2, we analyze the NW content and the number of NWs/sticks in

the domain. Assuming NWs are made of silver, an ensemble of 96 NWs of equal length lw = 4.7 µm and diameter dw =

79 nm in a square domain of size L = 4 lw results in a stick density n = 6 (according to eqn (1)) and an areal

mass density AMD = 65.641 mg m−2. Similarly, 288 NWs result in a stick density n = 18 and an areal mass

density AMD = 196.92 mg m−2. The values of AMD and the number of sticks just reported fall in the range listed

in Table S3 for the digital replicas of the SEM images and for the square subsets. It is thus reasonable to compare

the spatial assessment results pertaining to the square subsets with those obtained with the numerically generated

geometries at stick density n between 6 and 18 (between nc and 3nc).

The stick ensembles shown in Fig. S3b are analyzed following the procedure described in Fig. 1. First, the

percolation network is extracted (Fig. 1b). The sticks that belong to the percolation network are represented with

colored continuous lines in Fig. S3b, while sticks of the reference geometry not connected to the percolation network

are represented by gray dashed lines. The percolation networks in x- and y-directions coincide for all the samples.

Second, the percolation network is converted into an equivalent resistor network. Third, numerical simulations are

performed on the equivalent resistor network to obtain the e�ective conductivity in x- and y-directions as well as

the electric current intensity map (Fig. 1c). The resistance of each i-th stick representing a NW of length lNW,i is

computed assuming that NWs are right circular cylinders of constant diameter dNW. The resistance of the i-th stick

resistor elements is thus

Rw,i =
1
κw

lw,i
Aw
,

with Aw = πd
2
w/4. We assume that the value of Rj is the same for all contacts. Fourth, domain discretization and

spatial analyses are performed following the procedure described in Figs. 1d,e,f,g.

We complete the characterization of the electrode by performing numerical simulations on the equivalent resistor

networks obtained from the geometries shown in Fig. S3b. We make use of material properties available from the

literature [8] (listed in Table S3) since Sannicolo et al. [7] do not report material properties, such as κw, Rw, or Rj, for

their AgNW networks. Results are listed in Table S3 in terms of sheet resistance de�ned as

Re� =
∆V

Ie�
(S.9)

to ease comparison against the results by Sannicolo et al. [7], also reported therein.

The results of the numerical simulations clearly indicate that i) sheet resistance is inversely proportional to areal
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mass density (Re� progressively decreases from sample A1 to sample A3), and ii) all the samples show an anisotropic

response (the sheet resistance along x- and y-directions di�er).

The latter observation is consistent with the stick orientation distribution shown in Fig. S3c. The di�erence

between sheet resistance in x- and y-directions is especially pronounced for sample A1 for which the value in the

y-direction is more than double the value in the x-direction (this is due to the preferential orientation of the sticks

along the x-direction, which is evident from Fig. S3c).

The di�erences between the values computed in this work and those experimentally obtained by Sannicolo et

al. [7] are evident. The largest di�erence in sheet resistance concerns sample A1. The experimental measurement

is 68 kΩ, while the numerical simulations lead to 418 Ω at the most. A possible reason is that the NW content of

sample A1 is close to the percolation threshold. When the percolation threshold is approached, small �uctuations of

NW content are known to result in a wide �uctuations of sheet resistance [17]. Indeed, Sannicolo et al. [7] highlight

that “disconnected areas are only possible close to the percolation threshold and disappear for denser networks” while

commenting the reconstructed voltage maps on the entire samples. Sannicolo et al. [7] determine the sheet resistance

considering samples covering a surface 106 times larger than the SEM images we are considering. Macroscopic

NW density inhomogeneity are naturally considered in their experimental evaluation, but not in ours, and this is a

potential source of mismatch. Furthermore, the size of the numerical domain is known to have a signi�cant impact on

the evaluation of e�ective properties when the percolation threshold is approached [2, 12]. Numerical simulations

performed on SEM images representing larger portions of the entire samples are therefore expected to result in smaller

deviation from experimental measurements. As for samples A2 and A3, the order of magnitude of the numerically

determined sheet resistance matches that of the experimentally obtained values, but di�erences are still considerable.

The adoption of (plausible) material parameters reported in the literature, instead of ad hoc calibrated parameters, could

be an additional reason for the mismatch between numerically and experimentally obtained values. Nevertheless, the

arguments just exposed further support the claim that the geometries provided by the SEM images are not su�ciently

representative of the entire samples they have been extracted from. As such, e�ective properties of the entire sample

cannot be retrieved from the mere analysis of these geometries. Larger samples would (at the very least) be needed for

this purpose. A statistical analysis performed on multiple samples would also be recommended. We thus conclude that

all subsequent results must be considered as merely indicative, because an exact correlation with the results obtained

on the entire specimens considered by Sannicolo et al. [7] is not possible. Nevertheless, the agreement between our

results and those by Sannicolo et al. [7] supports the conclusion that the proposed methodology is suitable for the

analysis of the NW ensembles in the SEM images. We stress that the analysis of the electrical homogeneity for the

limiting cases Rw � Rj and Rw � Rj allows to compensate for the lack of material parameters resulting from an ad

hoc calibration. Indeed, the analyses described in section 2.3 and next section lead us to conclude that our electrical

homogeneity assessment indicate a range ofH values which is consistent with the assessment reported by Sannicolo

et al. [7] (in terms of electrical tortuosity).
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Table S4. Investigation of experimental samples from Sannicolo et al. [7]. The numerical simulations are performed
assuming NW diameter dw = 79 nm [7] and bulk conductivity κw = 63 × 106 Sm−1. The resulting values of Rw
are 15.482Ω (A1), 15.563Ω (A2), and 14.839Ω (A3). The average stick length lavg reported in Table S3 is used as lw.

sample direction κe�
(
Rw + Rj

)
Rw � Rja Rw = Rjb Rw � Rjc

(stick-dominated) (equally contributing) (junction-dominated)

A1 x 1.132 1.416 3.044
y 1.075 1.054 1.259

A2 x 2.113 2.310 3.987
y 2.076 2.404 5.127

A3 x 3.643 4.172 7.631
y 4.415 5.042 10.671

a Numerical simulations are performed with the single-node approach described in section S1.3.
b Numerical simulations are performed with the duplicated-node approach described in sec-

tion S1.3.
c Numerical simulations are performed with the duplicated-node approach described in sec-

tion S1.3. The junction resistance is set to Rj = 8 × 106Ω, thus giving Rw/Rj equal
to 1.935 × 10−6 (A1), 1.945 × 10−6 (A2), and 1.855 × 10−6 (A3).

S5.2. Experimental samples: Spatial analysis

We perform spatial analyses analogous to those that led to the result of Figs. 2 and 3, according to the procedure

described in Figs. 1d,e,f,g. We exclusively focus on the geometries shown in Fig. S3b (reference geometries of

samples A1, A2, and A3 from now on), and on the networks extracted from them. For consistency with the strategy

pursued in the rest of the work, we examine the response of the electrode under the two limit conditions Rw � Rj

(stick-dominated resistance) and Rw � Rj (junction-dominated resistance), and the intermediate condition Rw = Rj

(equally contributing resistance). These conditions are met with the parameters reported in Table S4. The reference Rw

value is computed with lw = lavg.

The e�ective conductivity (eqn (2)) is determined according to the procedure described in section S1.3 through

numerical simulations performed on the equivalent resistor network. Table S4 lists the e�ective conductivity of

each sample in x- and y-directions. The values, provided in terms of normalized conductivity κe�
(
Rw + Rj

)
, are

consistent with those reported in Fig. S2b at n = 6, 12, and 18. The ratio between the conductivity values in x-

and y-directions depends on the ratio Rw/Rj. More speci�cally, i) the di�erence between the two conductivity values

is maximum under junction-dominated conditions (Rw � Rj), ii) the most favorable conductivity direction depends

on the value of ratio Rw/Rj for an assigned geometry (refer to values for sample A2 in Table S4), and iii) the ratio

between conductivities in x- and y-directions obtained with Rw � Rj is the closest to the value reported in Table S3

(indeed, parameter values listed in Table S3 are such that Rw/Rj ≈ 10−2).

The results of the spatial analysis are reported in Figs. 4, S4, and S5. The values on the horizontal axis are

rounded so that lavg/lq = 1 and lavg/lq = 32 identify 4 × 4 and 128 × 128 grids, respectively. Being the size of the

domain L ≈ 21.5 µm and the average NW length lavg ≈ 4.7 µm, a 4 × 4 grid actually relates to lavg/lq = 0.9 and

a 128 × 128 grid to lavg/lq = 28. The approximation allows us to present the results with the same format as Fig. 2.

Figure S4 summarizes the results of the spatial assessment in terms of areal coverage dependence on the grid

resolution lavg/lq. Figure S4a shows the areal coverage of the reference geometry for samples A1, A2, and A3. The
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Fig. S4. Areal coverage investigation on experimental geometries. (a) Areal coverage of the observable geometries
shown in Fig. S3b. (b) Areal coverage of the percolation network extracted from the observable geometries (colored
sticks in Fig. S3b). (c) Areal coverage of the conduction network with perfect contact scenario (Rw � Rj). Panels (b)
and (c) report results for the networks in x- (continuous line and full circles) and y- (dashed line and empty circles)
directions. On the vertical axis of panels (b) and (c) the areal coverage is scaled by the areal coverage of reference Cref
for the same sample and grid resolution lavg/lq (panel (a)). The average values of the results obtained with numerical
geometries at n = 6, 12, and 18 are reported for comparison (dotted lines and asterisks). Results at n = 12, and 18
are also reported in Figs. 2a,b,c with labels n = 2nc and n = 3nc. Results at n = 6 are also reported in Fig. 2a with
label n = nc. A log2 scale representation is used for the grid resolution axis.

curves in Fig. S4a present strong analogies with those reported in Fig. 2a for n = 6, 12, and 18 (dotted lines with

asterisks in Fig. S4). Figures S4b,c report the areal coverage for percolation and conduction networks, respectively,

for x- (continuous line) and y- (dashed line) directions. A dependence of the results on the direction emerges for the

conduction network only. The extent of the di�erences between x- and y-directions is inversely proportional to the

NW content (pronounced for sample A1, modest for sample A3).

The results presented in Figs. S4b,c show analogies with the results obtained from the numerically generated

geometries in Figs. 2b,c (dotted lines with asterisks in Fig. S4). Referring to the �nest grid discretization (lavg/lq = 32 in

Fig. S4, and lw/lq = 32 in Fig. 2), the values of C/Cref for the percolation network are 0.954 (A1), 0.974 (A2), and 0.998

(A3) in Fig. S4b, and 0.690 (n = 6), 0.977 (n = 12), and 0.992 (n = 18) in Fig. 2b. For the conduction network, the values

of AF/AFref are 0.654 (A1), 0.732 (A2), and 0.819 (A3) in Fig. S4c, and 0.326 (n = 6), 0.697 (n = 12), and 0.803 (n = 18) in

Fig. 2c. The agreement between the results for samples A2 and A3 and those for n = 12 and n = 18 is noticeable. This

is not the case for sample A1 and the results for n = 6. We believe that the close proximity of stick density n = 6 to the

percolation threshold (nc = 5.64) is the reason for the observed behavior. For this reason, a high degree of variability

of the network properties (including the areal coverage of percolation and conduction networks) is expected. Since

the percolation probability is about 0.6 at n = 6 for L = 4lw, according to Fig. S2a, the existence of percolation and

conduction networks is not even ensured at n = 6.

Figures 4 and S5 show the contour maps of the areal coverage of samples A1, A2, and A3 for varying energy
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Fig. S5. Areal coverage dependence on grid resolution lavg/lq and areal power density threshold Pq/Pe� for experi-
mental geometries. Results about conduction network in the y-direction. A log2 scale representation is used for the
grid resolution axis. (b,c,d) Contour maps for the digitalizations of sample A1 (left), A2 (middle), and A3 (right) as
shown in Fig. S3a. Three resistance scenario are considered: Rw � Rj (a), Rw = Rj (b), and Rw � Rj (c). The areal
coverage is normalized by the areal coverage of reference Cref for a given stick density n and grid resolution lavg/lq
(Fig. S4a). Contour maps obtained by sampling data at lavg/lq = 1, 2, 4, 8, 16, and 32, and at Pq/Pe� between 0 and 3
with spacing 0.2.
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Fig. S6. Areal coverage dependence on grid resolution lw/lq and areal power density threshold Pq/Pe� for numerical
geometries. A log2 scale representation is used for the grid resolution axis. (a,b,c) Contour maps at stick density n = 6
(left), 12 (middle), and 18 (right). Results at n = 12 (middle) are the same reported in Fig. 3 with label n = 2nc (left).
Three resistance scenario are considered: Rw � Rj (a), Rw = Rj (b), and Rw � Rj (c). The areal coverage is normalized
by the areal coverage of reference Cref for a given stick density n and grid resolution lw/lq (Fig. 2a). Contour maps
obtained by sampling data at lw/lq = 1, 2, 4, 8, 16, and 32, and at Pq/Pe� between 0 and 3 with spacing 0.1.
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Table S5. Homogeneity quanti�cation: Summary of data presented in Fig. 3e and relative di�erence between values at
di�erent NW content.

homogeneity quanti�er resistance direction quantity A1 or A2 or A3 or
n = 6 n = 12 n = 18

electrical tortuosity valuesa 1.323 1.063 1.001
relative di�erenceb 32.17 6.194 0

Hc Rw � Rj x values 0.9442 0.8741 0.7011
(experimental samples) (stick-dominated) relative di�erenceb 34.66 24.67 0

y values 1.007 0.8558 0.7287
relative di�erenceb 38.18 17.44 0

Rw = Rj x values 0.9374 0.8821 0.7280
(equally contributing) relative di�erenceb 28.76 21.17 0

y values 0.9709 0.8599 0.7503
relative di�erenceb 29.39 14.60 0

Rw � Rj x values 0.9494 0.9385 0.8635
(junction-dominated) relative di�erenceb 9.946 8.694 0

y values 0.9791 0.915 0.9089
relative di�erenceb 7.731 0.6729 0

Hd Rw � Rj values 1.088 0.8791 0.7231
(numerical samples) (stick-dominated) relative di�erencee 50.52 21.58 0

Rw = Rj values 1.062 0.8837 0.7566
(equally contributing) relative di�erencee 40.40 16.80 0

Rw � Rj values 1.047 0.9558 0.8830
(junction-dominated) relative di�erencee 18.58 8.235 0

a Homogeneity quanti�cation performed by Sannicolo et al. [7]. Electrical tortuosity values as provided therein.
b Relative di�erence with respect to the A3 value (of the same set of data) computed as ( |vAi − vA3 |/vA3) × 100. The

value associated with the Ai-th specimen is indicated with vAi .
c Homogeneity index eqn (S.6) for specimens A1, A2, and A3 from Sannicolo et al. [7] (Fig. S3b).
d Homogeneity index eqn (S.6) for numerically generated samples at stick density n = 6, 12, and 18. The results are the

average of the evaluations performed on 100 realizations for each value of n (65 out of 100 for n = 6, the percolated
samples).

e Relative di�erence with respect to the n = 18 value (of the same set of data).
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density threshold Pq/Pe� and grid resolution lavg/lq. The �gures refer to networks in x- and y-directions, respectively.

The results obtained from the numerically generated geometries at n = 6, 12, and 18 are provided in Fig. S6 for

completeness.

The values of the homogeneity indexH (eqn (S.6)) computed for the experimental geometries (samples A1, A2,

and A3) are reported in Table S5 for x- andy-directions and under resistance scenarios Rw � Rj, Rw = Rj, and Rw � Rj.

The values of the homogeneity indexH computed for the numerical geometries at n = 6, 12, and 18 are included in

the table, but no distinction is made between x- and y-directions because the response of the numerical geometries is,

in average, isotropic (as demonstrated in section S2). The values of the electrical tortuosity reported by Sannicolo et

al. [7] are included in Table S5 for reference.
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