Efficient and bright green InP quantum dots lightemitting diodes enabled by a self-assembled dipole interface monolayer

Lufa Li,^a Yaning Luo,^a Qianqian Wu,^a Lin Wang,^a Guohua Jia,^b Tao Chen,^c Chengxi Zhang,^{*,a} Xuyong Yang^{*,a}

^aKey Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, China. Email: <u>Andrew xiwa@shu.edu.cn ;yangxy@shu.edu.cn</u>

^bSchool of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia.

^cOffice of Admissions and Career Services, Shanghai University, 99 Shangda Road, Shanghai 200444, China.

Figure S1 (a) TEM image and (b) PL & absorption spectra of green InP QDs.

Figure S2 (a) UPS spectra of the secondary-electron cut-off region and the valence band edge region of InP QDs film. (b) Dependence of $(\alpha hv)^2$ of InP QDs film upon the incident photon energy (*hv*).

Figure S3 The BFTP molecular model.

Figure S4 Dependence of $(\alpha hv)^2$ of TFB and TFB/BFTP films upon the incident photon energy (*hv*).

Figure S5 The PL intensity of InP QDs on TFB and TFB/BFTP films.

Figure S6 Relative dielectric constant (ε_r) extraction by the capacitance (*C*)-voltage (*V*) measurement.

The *C-V* curve was measured from the devices with the structure of ITO/LiF (40 nm)/perovskite/LiF(40 nm)/Al. By confirming the *C* value of HTL/InP QDs contact interface by the saturated part in the *C-V* curve towards negative voltage, we extracted the ε_r value of the contact interface by the following equation:

$$C = \frac{\varepsilon_0 \varepsilon_r S}{d}$$

where ε_0 , *S* and *d* represent vacuum permittivity, device area and thickness of the QDs film, respectively. The ε_r value was estimated to be 12.17.

The trap state density (n_{traps}) was determined using the trap-filled limit voltage equation:

$$n_{traps} = \frac{2\varepsilon_0 \varepsilon_r V_{TFL}}{ed^2}$$

where V_{TFL} is the intersection voltage of the trap-filled limit and ohmic regime, and *e* is the elemental charge.

Figure S7 Transmittance spectra for TFB (W/O BFTP) and TFB/BFTP (W BFTP) films on ITO substrate.

Figure S8 (a) UPS spectra of the secondary-electron cut-off region and the valence band edge region of PMA and Cu: PMA films deposited on ITO substrate. (b) Dependence of $(\alpha hv)^2$ of PMA and Cu: PMA films upon the incident photon energy (*hv*). (c) *J-V* characteristics for the electron-only device with a structure of ITO/ZnMgO/QDs/ZnMgO:PVP/A1 and the hole-only devices with a structure of ITO/PMA or Cu: PMA/TFB/BFTP/QDs/MoO₃/A1. (d) The band alignment diagram of PEDOT: PSS, Cu: PMA and TFB/BFTP layers.

Table S1 Summary of the device performance of QLEDs without treatment (pristine),with BFTP, with Cu:PMA & BFTP.

Sample	Von (V)	Peak EQE (%)	Peak Lum (cd/m ²)
pristine	2.5	3.71	1792
PEDOT:PSS/TFB/BFT	1.8	8.13	14085
Р			
Cu:PMA/TFB/BFTP	1.8	8.46	18356

Figure S9 (a) *L-V* and (b) *EQE-L* characteristics of PEDOT:PSS-based and Cu:PMA-based QLEDs.

Figure S10 (a) *L-V* and (b) *EQE-L* characteristics of PEDOT:PSS-based and Cu:PMA-based QLEDs.

Figure S11 Transmittance spectra for the PMA and Cu: PMA films.

Figure S12 Operational lifetimes of BFTP-based QLEDs with different hole injection layers (PEDOT: PSS, PMA and Cu: PMA HILs).