Electronic Supplementary Information

Ru doped WO₃ Enabling Efficient Hydrogen Oxidation Reaction in

Alkaline Media

Hai Liu,^a Zhuang Zhang,^a Mengxuan Li,^a Yaping Li,^{*a} Yun Kuang,^a and Xiaoming Sun^{*a}

- ^{a.} State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 (China).
- ^{b.} Corresponding authors email: <u>liyp@mail.buct.edu.cn</u>; sunxm@mail.buct.edu.cn

Figures and Tables

Figure S1. SEM images for Ru-WO₃ with different ratios at 200 nm scale. a) 5% Ru. b) 10% Ru.

Figure S2. Corresponding cv curves for Ru-WO₃, pure WO₃ and 20% Pt/C measured in 0.1 M KOH with H_2 .

Figure S3. Polarization curve for pure WO₃ in 0.1 M KOH at a scan rate of 5 mV/s.

Figure S4. The kinetic current density and exchange current density normalized to the mass loading of Ru.

Figure S5. Polarization curves for Ru-WO₃-20% before and after durability test at 0.1 V vs. RHE.

Figure S6. SEM image of Ru-WO₃-20% after chronoamperometry test

Figure S7. The electron density difference in Ru doped WO₃.

Figure S8. XPS spectra of Ru-WO₃-20% after chronoamperometry test. a) Ru 3p XPS spectra. b) W 4f XPS spectra. c) O 1s XPS spectra.

Figure S9. a) H* adsorption model on Pt (111) plane. b) OH* adsorption model on Pt (111) plane.

Figure S10. a) H* adsorption model on Ru (0001) plane. b) OH* adsorption model on Ru (0001) plane.

Table S1. EDS results for Ru-WO₃.

sample	W (at%)	Ru (at%)	Total
Ru-WO ₃ -5%	97.36%	2.74%	100%
Ru-WO ₃ -10%	94.76%	5.24%	100%
Ru-WO ₃ -20%	90.61%	9.39%	100%
Ru-WO ₃ -30%	89.24%	10.76%	100%

Catalyst	j ₀ (mA cm ⁻²)	Electrolyte	Ref
Ru-WO ₃	12.81	0.1 M KOH	This work
Ru Colloidosomes	2.86	0.1 M KOH	1
Ru _c /NHCS	1.74	0.1 M KOH	2
Ru-Cr ₁ (OH)-1.1	5.8	0.1 M KOH	3
O-RuNi@C-400	1.56	0.1 M KOH	4
HEA NSWs	6.42	0.1 M KOH	5
Ru/Ni-NiO@C	4.44	0.1 M KOH	6
Ru/Meso C	9.23	0.1 M KOH	7
Pt-Ru	2.98	0.1 M KOH	8
Ru modified Pt	5.52	0.1 M KOH	9
RuO ₂ -Pt/C	4.77	0.1 M KOH	10

Table S2. Comparison of exchange current density (j_0) between this work and reported Ru-based

 HOR catalysts

Ru ₇ Ni ₃ /C	1.8	0.1 M KOH	11
Ru-Ni diatomic sites	2.69	0.1 M KOH	12
RuP@NOC	2.64	0.1 M KOH	13
Ru@Pt _{2MLE}	1.78	0.1 M KOH	14
RuRh-Co	1.91	0.1 M KOH	15

Table S3. Values of ΔG_{H^*} , E_{H^*} - E^* , $\Delta EZPE$ and $T\Delta S$ for H^* adsorption.

Catalysts	$\Delta G_{H^*}(eV)$	E_{H^*} -E* (eV)	$\Delta EZPE (eV)$	TΔS (eV)
Ru-WO ₃	-0.015	-0.297	0.077	-0.205
Pt (111)	-0.110	-0.342	0.047	-0.205
Ru (0001)	-0.296	-0.523	0.022	-0.205

Table S4. Values of ΔG_{H^*} , E_{H^*} - E^* , $\Delta EZPE$ and $T\Delta S$ for H^* adsorption.				
Catalysts	$\Delta G_{OH^*} \left(eV \right)$	E_{OH*} -E* (eV)	$\Delta EZPE (eV)$	TΔS (eV)
Ru-WO ₃	-0.582	-1.03	-0.020	-0.470
Pt (111)	1.450	1.038	-0.058	-0.470
Ru (0001)	0.230	-0.181	-0.058	-0.470

Reference

- 1. X. Yang, B. Ouyang, P. Shen, Y. Sun, Y. Yang, Y. Gao, E. Kan, C. Li, K. Xu and Y. Xie, Journal of the American Chemical Society, 2022, 144, 11138-11147.
- 2. G. Meng, H. Cao, T. Wei, Q. Liu, J. Fu, S. Zhang, J. Luo and X. Liu, Chemical Communications, 2022, 58, 11839-11842.
- 3. B. Zhang, B. Zhang, G. Zhao, J. Wang, D. Liu, Y. Chen, L. Xia, M. Gao, Y. Liu, W. Sun and H. Pan, Nature Communications, 2022, 13, 5894.
- 4. X. Zhang, Z. Li, X. Sun, L. Wei, H. Niu, S. Chen, Q. Chen, C. Wang and F. Zheng, ACS Materials Letters, 2022, 4, 2097-2105.
- 5. C. Zhan, Y. Xu, L. Bu, H. Zhu, Y. Feng, T. Yang, Y. Zhang, Z. Yang, B. Huang, Q. Shao and X. Huang, Nature Communications, 2021, 12, 6261.

- 6. Y. Yang, Y. Huang, S. Zhou, Y. Liu, L. Shi, T. T. Isimjan and X. Yang, *Journal of Energy Chemistry*, 2022, **72**, 395-404.
- L. Zeng, H. Peng, W. Liu, J. Yin, L. Xiao, J. Lu and L. Zhuang, *Journal of Power Sources*, 2020, 461, 228147.
- G. Wang, W. Li, N. Wu, B. Huang, L. Xiao, J. Lu and L. Zhuang, *Journal of Power Sources*, 2019, **412**, 282-286.
- 9. S. Zhu, X. Qin, F. Xiao, S. Yang, Y. Xu, Z. Tan, J. Li, J. Yan, Q. Chen, M. Chen and M. Shao, *Nature Catalysis*, 2021, **4**, 711-718.
- 10. S. Panigrahy, R. Samanta, P. Panda, R. Mishra and S. Barman, *International Journal of Energy Research*, 2022, **46**, 6406-6420.
- 11. Y. Xue, L. Shi, X. Liu, J. Fang, X. Wang, B. P. Setzler, W. Zhu, Y. Yan and Z. Zhuang, *Nature Communications*, 2020, **11**, 5651.
- L. Han, P. Ou, W. Liu, X. Wang, H.-T. Wang, R. Zhang, C.-W. Pao, X. Liu, W.-F. Pong, J. Song,
 Z. Zhuang, M. V. Mirkin, J. Luo and H. L. Xin, *Science Advances*, 8, eabm3779.
- P. Wang, C. Wang, Y. Yang, S. Chen, Z. Cheng, M. Huang, H. Tong and Q. Chen, *Advanced Materials Interfaces*, 2022, 9, 2102193.
- J. N. Schwa⁻⁻mmleina, H. A. El-Sayeda, B. M. Stu⁻⁻hmeiera, K. Wagenbauerb, H. Dietzb and H. A. Gasteiger, ECS Trans., 2016, 75, 971–982
- Y. Cui, Z. Xu, D. Chen, T. Li, H. Yang, X. Mu, X. Gu, H. Zhou, S. Liu and S. Mu, *Nano Energy*, 2021, **90**, 106579.