Electronic Supplementary Information

Oxygenated copper vanadium selenide composite nanostructures as a cathode

material for zinc-ion batteries with high stability up to 10 000 cycles

D. Narsimulu, B. N. Vamsi Krishna, R. Shanthappa, and Jae Su Yu*

Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-aero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea

*Corresponding author.

Email address: jsyu@khu.ac.kr (J. S. Yu)

1. Experimental procedure

1.1. Materials

Following chemicals, such as copper (II) nitrate trihydrate (CuH₆N₂O₉, Sigma Aldrich, 99%), selenious acid (Se₂H₂O₃, Sigma Aldrich, 99%), 2-methylimidazole (C₄H₆N₂, Sigma Aldrich, 99%), ammonia meta vanadate (NH₄VO₃, Sigma Aldrich, 99%), metallic Zn (Sigma Aldrich, 0.1 cm thickness), zinc trifluoromethanesulfonate (Zn(CF₃SO₃)₂, Sigma Aldrich, 98%), and ZnCF (Sigma Aldrich, 98%), were utilized without further purification. The carbon fiber cloth (CFC) textile was received from the Nara Cell-Tech Corp., South Korea. Distilled water was produced in our laboratory by using a Milli-Q water equipment.

1.2. Material characterizations

The phase confirmation of the prepared samples was analyzed by X-ray diffraction (XRD; Rigaku MiniFlex 600 X-ray diffractometer with Cu K_{α} radiation). The morphology and fine structure of the powder sample were characterized by using a field-emission scanning electron microscope (FE-SEM; JEOL JSM-7500F) and a transmission electron microscope (TEM, JEOL- JEM). The valance states of the sample were examined by X-ray photoelectron spectroscopy (XPS; PHI 5000 VersaProbe ESCALAB 250xi).

1.3. Electrochemical measurements

The O-CuVSe cathode material slurry was prepared by mixing 70 wt% of active material, 15 wt% polyvinylidene fluoride, and 15 wt% of super P carbon in N-methyl 2 pyrrolidinone solvent. The well-mixed slurry was coated on a CFC substrate using a brush. The electrode was dried at 80 °C for 12 h in a vacuum over. After proper drying, O-CuVSe coated CFC was cut into circular discs. The mass loading of active material over the CFC substrate is around 1–2 mg cm⁻². The CR2032 coin-type cells were assembled in an air atmosphere using 2M ZnCF as an electrolyte, Zn metal

was employed as an anode, and GF/D glass fiber membrane (Whatman) was used as a separator. The galvanostatic charge-discharge (GCD) curves at various current densities and cyclic voltammetry (CV) curves at various scan rates were measured using the Wonna Tech battery cycler between the potential window of 0.4-2.0 V (*vs.* Zn/Zn^{2+}).

Cathode material	Electrolyte	Voltage (V)	Reversible capacity (mA h g ⁻¹)	Current density (A g ⁻¹)	Cycles	Ref.
Cu _{2-x} Se	2M ZnSO ₄	0.4–1.6	70	5	3000	1
ZnMn ₂ O ₄ /Mn ₂ O ₃	2M ZnSO ₄	0.8–1.9	80	1	1000	2
ZnMn ₂ O ₄	2M ZnSO ₄ with 0.05M MnSO ₄	0.8–1.9	106.5	0.1	300	3
Ni _x Mn _{3-x} O ₄	(2M ZnSO ₄ with 0.15M MnSO ₄	1.0-1.8	128.8	0.4	850	4
ZnNi _{0.5} Mn _{0.5} CoO ₄ @C	2M ZnSO ₄ with 0.1M MnSO ₄	1.0-1.8	110	0.2	500	5
MoS ₂	3M Zn(CF ₃ SO ₃) ₂	0.2-1.3	125	2	500	6
MoS ₂ @N	3M Zn(CF ₃ SO ₃) ₂	0.2-1.3	100	1	600	7
MoO ₃	1M ZnSO ₄	0.2-1.9	35	1	1000	8
VS ₂ @N-doped carbon	3 M Zn(CF ₃ SO ₃) ₂	0.2-1.8	144	1	600	9
α-MnO ₂ @C	1M ZnSO ₄	1.0-1.8	189	0.066	50	10
MnO@NGS	2M ZnSO ₄	0.9 -1.8	112.3	0.5	300	11
Cu ₃ V ₂ O ₇ (OH) ₂ ·2H ₂ O	2.5M Zn(CF ₃ SO ₃) ₂	0.2-1.6	100.1	0.2	130	12
CuHCF	1M ZnSO ₄	1.4-2.0	44	0.1	50	13
CuHCF	1M ZnSO ₄	0.8-1.9	40	0.02	20	14
CuHCF	20mM ZnSO ₄	1.4-2.1	53	1	50	15
ZnHCF	1M ZnSO ₄	0.8-2.0	49.4	0.06	100	16
ZnHCF@MnO ₂	0.5M ZnSO ₄	1.4-1.9	70	0.5	1000	17
ZnNi _{1/2} Mn _{1/2} CoO ₄	0.3M Zn (OTf) ₂ in MeCN	0.9-2.15	174	1	200	18
Mo_6S_8	1 M ZnSO ₄	0.25-1.0	87.4	0.18	150	19
CC@MnO ₂ @MXene	0.1M Mn(CH ₃ COO) ₂ with 0.01M Na ₂ SO ₄	0.8-1.9	80.6	1	800	20
O-CuVSe	2M Zn(CF ₃ SO ₃) ₂	0.4-2.0	166.6 117	1 2 5	1000 2000 10000	This work

Table S1. Comparison of the electrochemical performance of the O-CuVSe cathode material along

 with the previously reported cathode materials.

Fig. S1 Cycling performance of the O-CuVSe cathode at (a) 0.2 A g^{-1} and (b) 1 A g^{-1} .

Fig. S2 Voltage profile curves of the O-CuVSe cathode at 5 A g^{-1} .

Fig. S3 (a) GITT curves and (b) corresponding diffusivity coefficient for Zn^{2+} in Zn/O-CuVSe battery *vs.* voltage.

Fig. S4 Ex-situ XRD patterns of the O-CuVSe composite cathode measured after the 1st charge/discharge and 15th charge/discharge cycles.

Fig. S5 XPS survey scan spectra of the O-CuVSe cathode in pristine, charge, and discharge states.

Fig. S6 High-resolution Cu 2p XPS spectra: (a) pristine state, (b) discharge state, and (c) charge state.

Fig. S7 (a) Low- and (b) high-magnification FE-SEM images for the O-CuVSe cathode after 2000 cycles at 2 A g^{-1} .

Fig. S8 (a-c) FE-SEM images under different magnifications for the O-CuVSe cathode after 10000 cycles at 5 A g^{-1} .

References

- Y. Yang, J. Xiao, J. Cai, G. Wang, W. Du, Y. Zhang, X. Lu, and C. C. Li, *Adv. Funct. Mater.*, 2021, **31**, 2005092.
- S.-C. Ma, M. Sun, S.-X. Wang, D.-S. Li, W.-L. Liu, M.-M. Ren, F.-G. Kong, S.-J. Wang, and Y.-M. Xia, *Scr. Mater.*, 2021, **194**, 113707.
- X. Wu, Y. Xiang, Q. Peng, X. Wu, Y. Li, F. Tang, R. Song, Z. Liu, Z. He, and X. Wu, J. Mater. Chem. A, 2017, 5, 17990-17997.
- J. Long, J. Gu, Z. Yang, J. Mao, J. Hao, Z. Chen, and Z. Guo, *J. Mater. Chem. A*, 2019, 7, 17854-17866.
- 5. F. Xing, X. Shen, Y. Chen, X. Liu, T. Chen, and Q. Xu, *Dalton Trans.*, 2021, **50**, 5795-5806.
- C. Cai, Z. Tao, Y. Zhu, Y. Tan, A. Wang, H. Zhou, and Y. Yang, *Nanoscale Adv.*, 2021, 3, 3780-3787.
- Z. Sheng, P. Qi, Y. Lu, G. Liu, M. Chen, X. Gan, Y. Qin, K. Hao, and Y. Tang, ACS Appl. Mater. Interfaces, 2021, 13, 34495-34506.
- T. Xiong, Y. Zhang, Y. Wang, W. S. V. Lee, and J. Xue, *J. Mater. Chem. A*, 2020, 8, 9006-9012.
- 9. J. Liu, W. Peng, Y. Li, F. Zhang, and X. Fan, *Mater. Chem. C*, 2021, 9, 6308-6315.
- S. Islam, M. H. Alfaruqi, J. Song, S. Kim, D. T. Pham, J. Jo, S. Kim, V. Mathew, J. P. Baboo, and Z. Xiu, *J. Energy Chem.*, 2017, 26, 815-819.
- W. Li, X. Gao, Z. Chen, R. Guo, G. Zou, H. Hou, W. Deng, X. Ji, and J. Zhao, *Chem. Eng.* J., 2020, 402, 125509.
- 12. L. Chen, Z. Yang, J. Wu, H. Chen, and J. Meng, *Electroctrochim. Acta*, 2020, **330**, 135347.

- S. Kjeldgaard, M. Wagemaker, B. B. Iversen, and A. Bentien, *Mat. Adv.*, 2021, 2, 2036-2044.
- 14. Z. Jia, B. Wang, and Y. Wang, *Mater. Chem. Phys.* 2015, **149**, 601-606.
- 15. R. Trócoli and F. La Mantia, *ChemSusChem*, 2015, **8**, 481-485.
- 16. L. Zhang, L. Chen, X. Zhou, and Z. Liu, *Adv. Energy Mater.*, 2015, **5**, 1400930.
- 17. K. Lu, B. Song, Y. Zhang, H. Ma, and J. Zhang, J. Mater. Chem. A, 2017, 5, 23628-23633.
- 18. C. Pan, R. Zhang, R. G. Nuzzo, and A. A. Gewirth, Adv. Energy Mater., 2018, 8, 1800589.
- 19. Y. Cheng, L. Luo, L. Zhong, J. Chen, B. Li, W. Wang, S. X. Mao, C. Wang, V. L. Sprenkle, and G. Li, *ACS Appl. Mater. Interfaces*, 2016, **8**, 13673-13677.
- M. Qi, F. Li, Z. Zhang, Q. Lai, Y. Liu, J. Gu, and L. Wang, *J. Colloid Interface Sci.*, 2022, 615, 151-162.